Spaces:
Running
Running
File size: 4,734 Bytes
c6643c7 3e68ccf c6643c7 3e68ccf c6643c7 3e68ccf c6643c7 3e68ccf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import metaphor_python as metaphor
from langchain import PromptTemplate
from langchain.llms import Clarifai
from global_config import GlobalConfig
prompt = None
llm_contents = None
llm_yaml = None
metaphor_client = None
def get_llm(use_gpt: bool) -> Clarifai:
"""
Get a large language model.
:param use_gpt: True if GPT-3.5 is required; False is Llama 2 is required
"""
if use_gpt:
llm = Clarifai(
pat=GlobalConfig.CLARIFAI_PAT,
user_id=GlobalConfig.CLARIFAI_USER_ID_GPT,
app_id=GlobalConfig.CLARIFAI_APP_ID_GPT,
model_id=GlobalConfig.CLARIFAI_MODEL_ID_GPT,
verbose=True,
# temperature=0.1,
)
else:
llm = Clarifai(
pat=GlobalConfig.CLARIFAI_PAT,
user_id=GlobalConfig.CLARIFAI_USER_ID,
app_id=GlobalConfig.CLARIFAI_APP_ID,
model_id=GlobalConfig.CLARIFAI_MODEL_ID,
verbose=True,
# temperature=0.1,
)
print(llm)
return llm
def generate_slides_content(topic: str) -> str:
"""
Generate the outline/contents of slides for a presentation on a given topic.
:param topic: Topic/subject matter/idea on which slides are to be generated
:return: The content
"""
global prompt
global llm_contents
if prompt is None:
with open(GlobalConfig.SLIDES_TEMPLATE_FILE, 'r') as in_file:
template_txt = in_file.read().strip()
prompt = PromptTemplate.from_template(template_txt)
formatted_prompt = prompt.format(topic=topic)
print(f'formatted_prompt:\n{formatted_prompt}')
if llm_contents is None:
llm_contents = get_llm(use_gpt=False)
slides_content = llm_contents(formatted_prompt, verbose=True)
return slides_content
def text_to_json(content: str) -> str:
"""
Convert input text into structured JSON representation.
:param content: Input text
:return: JSON string
"""
global llm_yaml
content = content.replace('```', '')
# f-string is not used in order to prevent interpreting the brackets
text = '''
Convert the given slide deck text into structured JSON output.
Also, generate and add an engaging presentation title.
The output should be only correct and valid JSON having the following structure:
{
"title": "...",
"slides": [
{
"heading": "...",
"bullet_points": [
"...",
[
"...",
"..."
]
]
},
{
...
},
]
}
Text:
'''
text += content
text += '''
Output:
```json
'''
text = text.strip()
print(text)
if llm_yaml is None:
llm_yaml = get_llm(use_gpt=True)
output = llm_yaml(text, verbose=True)
output = output.strip()
first_index = max(0, output.find('{'))
last_index = min(output.rfind('}'), len(output))
output = output[first_index: last_index + 1]
return output
def text_to_yaml(content: str) -> str:
"""
Convert input text into structured YAML representation.
:param content: Input text
:return: JSON string
"""
global llm_yaml
content = content.replace('```', '')
# f-string is not used in order to prevent interpreting the brackets
text = '''
You are a helpful AI assistant.
Convert the given slide deck text into structured YAML output.
Also, generate and add an engaging presentation title.
The output should be only correct and valid YAML having the following structure:
title: "..."
slides:
- heading: "..."
bullet_points:
- "..."
- "..."
- heading: "..."
bullet_points:
- "..."
- "...": # This line ends with a colon because it has a sub-block
- "..."
- "..."
Text:
'''
text += content
text += '''
Output:
```yaml
'''
text = text.strip()
print(text)
if llm_yaml is None:
llm_yaml = get_llm(use_gpt=True)
output = llm_yaml(text, verbose=True)
output = output.strip()
# first_index = max(0, output.find('{'))
# last_index = min(output.rfind('}'), len(output))
# output = output[first_index: last_index + 1]
return output
def get_related_websites(query: str) -> metaphor.api.SearchResponse:
global metaphor_client
if not metaphor_client:
metaphor_client = metaphor.Metaphor(api_key=GlobalConfig.METAPHOR_API_KEY)
return metaphor_client.search(query, use_autoprompt=True, num_results=5)
if __name__ == '__main__':
results = get_related_websites('5G AI WiFi 6')
for a_result in results.results:
print(a_result.title, a_result.url, a_result.extract)
|