File size: 4,584 Bytes
8537019
aa4f694
8537019
 
3e68ccf
 
 
 
 
724babe
 
 
aa4f694
 
 
 
 
724babe
3e68ccf
 
 
 
724babe
3e68ccf
 
 
 
 
e55d16a
3e68ccf
 
 
 
 
 
 
 
e55d16a
3e68ccf
 
 
 
 
 
 
aa4f694
3e68ccf
e55d16a
3e68ccf
 
724babe
 
 
 
 
 
 
 
469fc38
724babe
 
 
 
3e68ccf
 
 
 
724babe
e55d16a
3e68ccf
 
e55d16a
 
 
3e68ccf
724babe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469fc38
 
724babe
3e68ccf
 
8537019
 
 
c6643c7
8537019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa4f694
 
8537019
 
 
 
 
 
 
 
 
aa4f694
 
8537019
 
 
aa4f694
8537019
 
 
aa4f694
8537019
 
 
 
 
 
 
 
 
3e68ccf
8537019
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import json
import logging
import time
import requests
from langchain.llms import Clarifai

from global_config import GlobalConfig


HF_API_URL = f"https://api-inference.huggingface.co/models/{GlobalConfig.HF_LLM_MODEL_NAME}"
HF_API_HEADERS = {"Authorization": f"Bearer {GlobalConfig.HUGGINGFACEHUB_API_TOKEN}"}

logging.basicConfig(
    level=GlobalConfig.LOG_LEVEL,
    format='%(asctime)s - %(message)s',
)

# llm = None


def get_llm(use_gpt: bool) -> Clarifai:
    """
    Get a large language model (hosted by Clarifai).

    :param use_gpt: True if GPT-3.5 is required; False is Llama 2 is required
    """

    if use_gpt:
        _ = Clarifai(
            pat=GlobalConfig.CLARIFAI_PAT,
            user_id=GlobalConfig.CLARIFAI_USER_ID_GPT,
            app_id=GlobalConfig.CLARIFAI_APP_ID_GPT,
            model_id=GlobalConfig.CLARIFAI_MODEL_ID_GPT,
            verbose=True,
            # temperature=0.1,
        )
    else:
        _ = Clarifai(
            pat=GlobalConfig.CLARIFAI_PAT,
            user_id=GlobalConfig.CLARIFAI_USER_ID,
            app_id=GlobalConfig.CLARIFAI_APP_ID,
            model_id=GlobalConfig.CLARIFAI_MODEL_ID,
            verbose=True,
            # temperature=0.1,
        )
    # print(llm)

    return _


def hf_api_query(payload: dict):
    """
    Invoke HF inference end-point API.

    :param payload: The prompt for the LLM and related parameters
    :return: The output from the LLM
    """

    # logging.debug(f'{payload=}')
    response = requests.post(HF_API_URL, headers=HF_API_HEADERS, json=payload)
    return response.json()


def generate_slides_content(topic: str) -> str:
    """
    Generate the outline/contents of slides for a presentation on a given topic.

    :param topic: Topic on which slides are to be generated
    :return: The content in JSON format
    """

    with open(GlobalConfig.SLIDES_TEMPLATE_FILE, 'r') as in_file:
        template_txt = in_file.read().strip()
        template_txt = template_txt.replace('<REPLACE_PLACEHOLDER>', topic)

    output = hf_api_query({
        "inputs": template_txt,
        "parameters": {
            'temperature': GlobalConfig.LLM_MODEL_TEMPERATURE,
            'min_length': GlobalConfig.LLM_MODEL_MIN_OUTPUT_LENGTH,
            'max_length': GlobalConfig.LLM_MODEL_MAX_OUTPUT_LENGTH,
            'max_new_tokens': GlobalConfig.LLM_MODEL_MAX_OUTPUT_LENGTH,
            'num_return_sequences': 1,
            'return_full_text': False,
            # "repetition_penalty": 0.0001
        },
        "options": {
            'wait_for_model': True,
            'use_cache': True
        }
    })

    output = output[0]['generated_text'].strip()
    # output = output[len(template_txt):]

    json_end_idx = output.rfind('```')
    if json_end_idx != -1:
        # logging.debug(f'{json_end_idx=}')
        output = output[:json_end_idx]

    logging.debug(f'{output=}')

    return output


def get_ai_image(text: str) -> str:
    """
    Get a Stable Diffusion-generated image based on a given text.

    :param text: The input text
    :return: The Base 64-encoded image
    """

    url = f'''https://api.clarifai.com/v2/users/{GlobalConfig.CLARIFAI_USER_ID_SD}/apps/{GlobalConfig.CLARIFAI_APP_ID_SD}/models/{GlobalConfig.CLARIFAI_MODEL_ID_SD}/versions/{GlobalConfig.CLARIFAI_MODEL_VERSION_ID_SD}/outputs'''
    headers = {
        "Content-Type": "application/json",
        "Authorization": f'Key {GlobalConfig.CLARIFAI_PAT}'
    }
    data = {
        "inputs": [
            {
                "data": {
                    "text": {
                        "raw": text
                    }
                }
            }
        ]
    }

    # print('*** AI image generator...')
    # print(url)

    start = time.time()
    response = requests.post(
        url=url,
        headers=headers,
        data=json.dumps(data)
    )
    stop = time.time()

    # print('Response:', response, response.status_code)
    logging.debug('Image generation took', stop - start, 'seconds')
    img_data = ''

    if response.ok:
        # print('*** Clarifai SDXL request: Response OK')
        json_data = json.loads(response.text)
        img_data = json_data['outputs'][0]['data']['image']['base64']
    else:
        logging.error('*** Image generation failed:', response.text)

    return img_data


if __name__ == '__main__':
    # results = get_related_websites('5G AI WiFi 6')
    #
    # for a_result in results.results:
    #     print(a_result.title, a_result.url, a_result.extract)

    # get_ai_image('A talk on AI, covering pros and cons')
    pass