File size: 46,459 Bytes
e9627f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
{
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "https://www.kdnuggets.com/deploying-your-first-machine-learning-model"
      ],
      "metadata": {
        "id": "MP7O1gtliL6n"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "try:\n",
        "    import opendatasets as od\n",
        "    import pandas as pd\n",
        "except:\n",
        "    !pip install opendatasets\n",
        "    import opendatasets as od\n",
        "from os import path\n",
        "\n",
        "url = \"https://www.kaggle.com/datasets/uciml/glass\"  ### kaggle dataset url here\n",
        "data_dir = \"/content/\"  ### directory where you want to save data\n",
        "\n",
        "# Go to the account tab and under API section, click Create New API Token.\n",
        "\n",
        "# A JSON file will be downloaded, open it locally or you can also use any online JSON viewer and upload it there.\n",
        "\n",
        "# On opening this file, you will find the username and key in it. Copy the username and password and paste it into the prompted Notebook cell.\n",
        "# The content of the downloaded file would look like this.\n",
        "\n",
        "#               {\"username\":<KAGGLE USERNAME>,\"key\":<KAGGLE KEY>}\n",
        "\n",
        "\n",
        "def download_data(url, data_dir):\n",
        "    od.download(url, data_dir)"
      ],
      "metadata": {
        "id": "5ewudtMkfnPL"
      },
      "execution_count": 4,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "#  comment out below if you already have the data downloaded\n",
        "# download_data(url, data_dir)"
      ],
      "metadata": {
        "id": "y-gTjPFggtAM"
      },
      "execution_count": 2,
      "outputs": []
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 143
        },
        "id": "lIYdn1woOS1n",
        "outputId": "405db65f-b99a-4643-b8b0-2e06bcf6ea53"
      },
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "          RI     Na    Mg    Al     Si     K     Ca   Ba    Fe  Type\n",
              "55   1.51769  12.45  2.71  1.29  73.70  0.56   9.06  0.0  0.24     1\n",
              "184  1.51115  17.38  0.00  0.34  75.41  0.00   6.65  0.0  0.00     6\n",
              "103  1.52725  13.80  3.15  0.66  70.57  0.08  11.64  0.0  0.00     2"
            ],
            "text/html": [
              "\n",
              "  <div id=\"df-b2950a69-76d4-46ec-8a3d-96971bd2b1f1\" class=\"colab-df-container\">\n",
              "    <div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>RI</th>\n",
              "      <th>Na</th>\n",
              "      <th>Mg</th>\n",
              "      <th>Al</th>\n",
              "      <th>Si</th>\n",
              "      <th>K</th>\n",
              "      <th>Ca</th>\n",
              "      <th>Ba</th>\n",
              "      <th>Fe</th>\n",
              "      <th>Type</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>55</th>\n",
              "      <td>1.51769</td>\n",
              "      <td>12.45</td>\n",
              "      <td>2.71</td>\n",
              "      <td>1.29</td>\n",
              "      <td>73.70</td>\n",
              "      <td>0.56</td>\n",
              "      <td>9.06</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.24</td>\n",
              "      <td>1</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>184</th>\n",
              "      <td>1.51115</td>\n",
              "      <td>17.38</td>\n",
              "      <td>0.00</td>\n",
              "      <td>0.34</td>\n",
              "      <td>75.41</td>\n",
              "      <td>0.00</td>\n",
              "      <td>6.65</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.00</td>\n",
              "      <td>6</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>103</th>\n",
              "      <td>1.52725</td>\n",
              "      <td>13.80</td>\n",
              "      <td>3.15</td>\n",
              "      <td>0.66</td>\n",
              "      <td>70.57</td>\n",
              "      <td>0.08</td>\n",
              "      <td>11.64</td>\n",
              "      <td>0.0</td>\n",
              "      <td>0.00</td>\n",
              "      <td>2</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>\n",
              "    <div class=\"colab-df-buttons\">\n",
              "\n",
              "  <div class=\"colab-df-container\">\n",
              "    <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-b2950a69-76d4-46ec-8a3d-96971bd2b1f1')\"\n",
              "            title=\"Convert this dataframe to an interactive table.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
              "    <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "\n",
              "  <style>\n",
              "    .colab-df-container {\n",
              "      display:flex;\n",
              "      gap: 12px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert {\n",
              "      background-color: #E8F0FE;\n",
              "      border: none;\n",
              "      border-radius: 50%;\n",
              "      cursor: pointer;\n",
              "      display: none;\n",
              "      fill: #1967D2;\n",
              "      height: 32px;\n",
              "      padding: 0 0 0 0;\n",
              "      width: 32px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert:hover {\n",
              "      background-color: #E2EBFA;\n",
              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "      fill: #174EA6;\n",
              "    }\n",
              "\n",
              "    .colab-df-buttons div {\n",
              "      margin-bottom: 4px;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert {\n",
              "      background-color: #3B4455;\n",
              "      fill: #D2E3FC;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert:hover {\n",
              "      background-color: #434B5C;\n",
              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "      fill: #FFFFFF;\n",
              "    }\n",
              "  </style>\n",
              "\n",
              "    <script>\n",
              "      const buttonEl =\n",
              "        document.querySelector('#df-b2950a69-76d4-46ec-8a3d-96971bd2b1f1 button.colab-df-convert');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      async function convertToInteractive(key) {\n",
              "        const element = document.querySelector('#df-b2950a69-76d4-46ec-8a3d-96971bd2b1f1');\n",
              "        const dataTable =\n",
              "          await google.colab.kernel.invokeFunction('convertToInteractive',\n",
              "                                                    [key], {});\n",
              "        if (!dataTable) return;\n",
              "\n",
              "        const docLinkHtml = 'Like what you see? Visit the ' +\n",
              "          '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
              "          + ' to learn more about interactive tables.';\n",
              "        element.innerHTML = '';\n",
              "        dataTable['output_type'] = 'display_data';\n",
              "        await google.colab.output.renderOutput(dataTable, element);\n",
              "        const docLink = document.createElement('div');\n",
              "        docLink.innerHTML = docLinkHtml;\n",
              "        element.appendChild(docLink);\n",
              "      }\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "\n",
              "<div id=\"df-c39206fc-c582-432b-bf27-e108ba1cc6c6\">\n",
              "  <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-c39206fc-c582-432b-bf27-e108ba1cc6c6')\"\n",
              "            title=\"Suggest charts\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "     width=\"24px\">\n",
              "    <g>\n",
              "        <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
              "    </g>\n",
              "</svg>\n",
              "  </button>\n",
              "\n",
              "<style>\n",
              "  .colab-df-quickchart {\n",
              "      --bg-color: #E8F0FE;\n",
              "      --fill-color: #1967D2;\n",
              "      --hover-bg-color: #E2EBFA;\n",
              "      --hover-fill-color: #174EA6;\n",
              "      --disabled-fill-color: #AAA;\n",
              "      --disabled-bg-color: #DDD;\n",
              "  }\n",
              "\n",
              "  [theme=dark] .colab-df-quickchart {\n",
              "      --bg-color: #3B4455;\n",
              "      --fill-color: #D2E3FC;\n",
              "      --hover-bg-color: #434B5C;\n",
              "      --hover-fill-color: #FFFFFF;\n",
              "      --disabled-bg-color: #3B4455;\n",
              "      --disabled-fill-color: #666;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart {\n",
              "    background-color: var(--bg-color);\n",
              "    border: none;\n",
              "    border-radius: 50%;\n",
              "    cursor: pointer;\n",
              "    display: none;\n",
              "    fill: var(--fill-color);\n",
              "    height: 32px;\n",
              "    padding: 0;\n",
              "    width: 32px;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart:hover {\n",
              "    background-color: var(--hover-bg-color);\n",
              "    box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "    fill: var(--button-hover-fill-color);\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart-complete:disabled,\n",
              "  .colab-df-quickchart-complete:disabled:hover {\n",
              "    background-color: var(--disabled-bg-color);\n",
              "    fill: var(--disabled-fill-color);\n",
              "    box-shadow: none;\n",
              "  }\n",
              "\n",
              "  .colab-df-spinner {\n",
              "    border: 2px solid var(--fill-color);\n",
              "    border-color: transparent;\n",
              "    border-bottom-color: var(--fill-color);\n",
              "    animation:\n",
              "      spin 1s steps(1) infinite;\n",
              "  }\n",
              "\n",
              "  @keyframes spin {\n",
              "    0% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "      border-left-color: var(--fill-color);\n",
              "    }\n",
              "    20% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    30% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    40% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    60% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    80% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "    90% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "  }\n",
              "</style>\n",
              "\n",
              "  <script>\n",
              "    async function quickchart(key) {\n",
              "      const quickchartButtonEl =\n",
              "        document.querySelector('#' + key + ' button');\n",
              "      quickchartButtonEl.disabled = true;  // To prevent multiple clicks.\n",
              "      quickchartButtonEl.classList.add('colab-df-spinner');\n",
              "      try {\n",
              "        const charts = await google.colab.kernel.invokeFunction(\n",
              "            'suggestCharts', [key], {});\n",
              "      } catch (error) {\n",
              "        console.error('Error during call to suggestCharts:', error);\n",
              "      }\n",
              "      quickchartButtonEl.classList.remove('colab-df-spinner');\n",
              "      quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
              "    }\n",
              "    (() => {\n",
              "      let quickchartButtonEl =\n",
              "        document.querySelector('#df-c39206fc-c582-432b-bf27-e108ba1cc6c6 button');\n",
              "      quickchartButtonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "    })();\n",
              "  </script>\n",
              "</div>\n",
              "\n",
              "    </div>\n",
              "  </div>\n"
            ]
          },
          "metadata": {},
          "execution_count": 5
        }
      ],
      "source": [
        "import pandas as pd\n",
        "#  use path below for colab\n",
        "# glass_df = pd.read_csv(\"/content/glass/glass.csv\")\n",
        "glass_df = pd.read_csv(\"glass.csv\")\n",
        "\n",
        "glass_df = glass_df.sample(frac = 1)\n",
        "glass_df.head(3)"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from sklearn.model_selection import train_test_split\n",
        "\n",
        "X = glass_df.drop(\"Type\",axis=1)\n",
        "y = glass_df.Type\n",
        "\n",
        "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=125)"
      ],
      "metadata": {
        "id": "7_eWUKS6hV2o"
      },
      "execution_count": 6,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from sklearn.ensemble import RandomForestClassifier\n",
        "from sklearn.preprocessing import StandardScaler\n",
        "from sklearn.impute import SimpleImputer\n",
        "from sklearn.pipeline import Pipeline\n",
        "\n",
        "\n",
        "pipe = Pipeline(\n",
        "    steps=[\n",
        "        (\"imputer\", SimpleImputer()),\n",
        "        (\"scaler\", StandardScaler()),\n",
        "        (\"model\", RandomForestClassifier(n_estimators=100, random_state=125)),\n",
        "    ]\n",
        ")\n",
        "pipe.fit(X_train, y_train)\n",
        "\n",
        "pipe.score(X_test, y_test)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "MTMLGHGuhvAA",
        "outputId": "d4c7a6b6-6774-47d7-d288-2d1a29dbd9c5"
      },
      "execution_count": 7,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "0.7846153846153846"
            ]
          },
          "metadata": {},
          "execution_count": 7
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from sklearn.metrics import classification_report\n",
        "\n",
        "y_pred = pipe.predict(X_test)\n",
        "print(classification_report(y_test,y_pred))"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "EREHPUy_h0Zq",
        "outputId": "2a4255fb-c2b4-4fc8-cec8-f07bd619cbe0"
      },
      "execution_count": 8,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "              precision    recall  f1-score   support\n",
            "\n",
            "           1       0.70      0.91      0.79        23\n",
            "           2       0.87      0.80      0.83        25\n",
            "           3       1.00      0.33      0.50         6\n",
            "           5       0.67      1.00      0.80         2\n",
            "           6       1.00      1.00      1.00         2\n",
            "           7       0.80      0.57      0.67         7\n",
            "\n",
            "    accuracy                           0.78        65\n",
            "   macro avg       0.84      0.77      0.77        65\n",
            "weighted avg       0.81      0.78      0.77        65\n",
            "\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install skops"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "56jjXsBxiAiB",
        "outputId": "27f71a89-8eec-4e8a-b23b-f3f1f7329cbe"
      },
      "execution_count": 8,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Collecting skops\n",
            "  Downloading skops-0.9.0-py3-none-any.whl (120 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m120.7/120.7 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: scikit-learn>=0.24 in /usr/local/lib/python3.10/dist-packages (from skops) (1.2.2)\n",
            "Requirement already satisfied: huggingface-hub>=0.17.0 in /usr/local/lib/python3.10/dist-packages (from skops) (0.19.4)\n",
            "Requirement already satisfied: tabulate>=0.8.8 in /usr/local/lib/python3.10/dist-packages (from skops) (0.9.0)\n",
            "Requirement already satisfied: packaging>=17.0 in /usr/local/lib/python3.10/dist-packages (from skops) (23.2)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.17.0->skops) (3.13.1)\n",
            "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.17.0->skops) (2023.6.0)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.17.0->skops) (2.31.0)\n",
            "Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.17.0->skops) (4.66.1)\n",
            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.17.0->skops) (6.0.1)\n",
            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.17.0->skops) (4.5.0)\n",
            "Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24->skops) (1.23.5)\n",
            "Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24->skops) (1.11.4)\n",
            "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24->skops) (1.3.2)\n",
            "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24->skops) (3.2.0)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.17.0->skops) (3.3.2)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.17.0->skops) (3.6)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.17.0->skops) (2.0.7)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.17.0->skops) (2023.11.17)\n",
            "Installing collected packages: skops\n",
            "Successfully installed skops-0.9.0\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import skops.io as sio\n",
        "sio.dump(pipe, \"glass_pipeline.skops\")"
      ],
      "metadata": {
        "id": "wZARmF26h4S9"
      },
      "execution_count": 9,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "sio.load(\"glass_pipeline.skops\", trusted=True)\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 161
        },
        "id": "DQ1zj-mjiIRL",
        "outputId": "b93c6edf-c16f-403c-ef69-38970b7c2b4f"
      },
      "execution_count": 10,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "Pipeline(steps=[('imputer', SimpleImputer()), ('scaler', StandardScaler()),\n",
              "                ('model', RandomForestClassifier(random_state=125))])"
            ],
            "text/html": [
              "<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"β–Έ\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"β–Ύ\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>Pipeline(steps=[(&#x27;imputer&#x27;, SimpleImputer()), (&#x27;scaler&#x27;, StandardScaler()),\n",
              "                (&#x27;model&#x27;, RandomForestClassifier(random_state=125))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" ><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[(&#x27;imputer&#x27;, SimpleImputer()), (&#x27;scaler&#x27;, StandardScaler()),\n",
              "                (&#x27;model&#x27;, RandomForestClassifier(random_state=125))])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" ><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">SimpleImputer</label><div class=\"sk-toggleable__content\"><pre>SimpleImputer()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-3\" type=\"checkbox\" ><label for=\"sk-estimator-id-3\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">StandardScaler</label><div class=\"sk-toggleable__content\"><pre>StandardScaler()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-4\" type=\"checkbox\" ><label for=\"sk-estimator-id-4\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">RandomForestClassifier</label><div class=\"sk-toggleable__content\"><pre>RandomForestClassifier(random_state=125)</pre></div></div></div></div></div></div></div>"
            ]
          },
          "metadata": {},
          "execution_count": 10
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install gradio"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "beFfVpBQiWMo",
        "outputId": "13434ca2-9b7e-433a-b805-b565805b936b"
      },
      "execution_count": 11,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Requirement already satisfied: gradio in /usr/local/lib/python3.10/dist-packages (4.12.0)\n",
            "Requirement already satisfied: aiofiles<24.0,>=22.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (23.2.1)\n",
            "Requirement already satisfied: altair<6.0,>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (4.2.2)\n",
            "Requirement already satisfied: fastapi in /usr/local/lib/python3.10/dist-packages (from gradio) (0.108.0)\n",
            "Requirement already satisfied: ffmpy in /usr/local/lib/python3.10/dist-packages (from gradio) (0.3.1)\n",
            "Requirement already satisfied: gradio-client==0.8.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (0.8.0)\n",
            "Requirement already satisfied: httpx in /usr/local/lib/python3.10/dist-packages (from gradio) (0.26.0)\n",
            "Requirement already satisfied: huggingface-hub>=0.19.3 in /usr/local/lib/python3.10/dist-packages (from gradio) (0.19.4)\n",
            "Requirement already satisfied: importlib-resources<7.0,>=1.3 in /usr/local/lib/python3.10/dist-packages (from gradio) (6.1.1)\n",
            "Requirement already satisfied: jinja2<4.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (3.1.2)\n",
            "Requirement already satisfied: markupsafe~=2.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (2.1.3)\n",
            "Requirement already satisfied: matplotlib~=3.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (3.7.1)\n",
            "Requirement already satisfied: numpy~=1.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (1.23.5)\n",
            "Requirement already satisfied: orjson~=3.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (3.9.10)\n",
            "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from gradio) (23.2)\n",
            "Requirement already satisfied: pandas<3.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (1.5.3)\n",
            "Requirement already satisfied: pillow<11.0,>=8.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (9.4.0)\n",
            "Requirement already satisfied: pydantic>=2.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (2.5.3)\n",
            "Requirement already satisfied: pydub in /usr/local/lib/python3.10/dist-packages (from gradio) (0.25.1)\n",
            "Requirement already satisfied: python-multipart in /usr/local/lib/python3.10/dist-packages (from gradio) (0.0.6)\n",
            "Requirement already satisfied: pyyaml<7.0,>=5.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (6.0.1)\n",
            "Requirement already satisfied: semantic-version~=2.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (2.10.0)\n",
            "Requirement already satisfied: tomlkit==0.12.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (0.12.0)\n",
            "Requirement already satisfied: typer[all]<1.0,>=0.9 in /usr/local/lib/python3.10/dist-packages (from gradio) (0.9.0)\n",
            "Requirement already satisfied: typing-extensions~=4.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (4.9.0)\n",
            "Requirement already satisfied: uvicorn>=0.14.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (0.25.0)\n",
            "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from gradio-client==0.8.0->gradio) (2023.6.0)\n",
            "Requirement already satisfied: websockets<12.0,>=10.0 in /usr/local/lib/python3.10/dist-packages (from gradio-client==0.8.0->gradio) (11.0.3)\n",
            "Requirement already satisfied: entrypoints in /usr/local/lib/python3.10/dist-packages (from altair<6.0,>=4.2.0->gradio) (0.4)\n",
            "Requirement already satisfied: jsonschema>=3.0 in /usr/local/lib/python3.10/dist-packages (from altair<6.0,>=4.2.0->gradio) (4.19.2)\n",
            "Requirement already satisfied: toolz in /usr/local/lib/python3.10/dist-packages (from altair<6.0,>=4.2.0->gradio) (0.12.0)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.19.3->gradio) (3.13.1)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.19.3->gradio) (2.31.0)\n",
            "Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.19.3->gradio) (4.66.1)\n",
            "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (1.2.0)\n",
            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (0.12.1)\n",
            "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (4.46.0)\n",
            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (1.4.5)\n",
            "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (3.1.1)\n",
            "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (2.8.2)\n",
            "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas<3.0,>=1.0->gradio) (2023.3.post1)\n",
            "Requirement already satisfied: annotated-types>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2.0->gradio) (0.6.0)\n",
            "Requirement already satisfied: pydantic-core==2.14.6 in /usr/local/lib/python3.10/dist-packages (from pydantic>=2.0->gradio) (2.14.6)\n",
            "Requirement already satisfied: click<9.0.0,>=7.1.1 in /usr/local/lib/python3.10/dist-packages (from typer[all]<1.0,>=0.9->gradio) (8.1.7)\n",
            "Requirement already satisfied: colorama<0.5.0,>=0.4.3 in /usr/local/lib/python3.10/dist-packages (from typer[all]<1.0,>=0.9->gradio) (0.4.6)\n",
            "Requirement already satisfied: shellingham<2.0.0,>=1.3.0 in /usr/local/lib/python3.10/dist-packages (from typer[all]<1.0,>=0.9->gradio) (1.5.4)\n",
            "Requirement already satisfied: rich<14.0.0,>=10.11.0 in /usr/local/lib/python3.10/dist-packages (from typer[all]<1.0,>=0.9->gradio) (13.7.0)\n",
            "Requirement already satisfied: h11>=0.8 in /usr/local/lib/python3.10/dist-packages (from uvicorn>=0.14.0->gradio) (0.14.0)\n",
            "Requirement already satisfied: starlette<0.33.0,>=0.29.0 in /usr/local/lib/python3.10/dist-packages (from fastapi->gradio) (0.32.0.post1)\n",
            "Requirement already satisfied: anyio in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (3.7.1)\n",
            "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (2023.11.17)\n",
            "Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (1.0.2)\n",
            "Requirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (3.6)\n",
            "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (1.3.0)\n",
            "Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (23.1.0)\n",
            "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (2023.11.2)\n",
            "Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (0.32.0)\n",
            "Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (0.15.2)\n",
            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib~=3.0->gradio) (1.16.0)\n",
            "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich<14.0.0,>=10.11.0->typer[all]<1.0,>=0.9->gradio) (3.0.0)\n",
            "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich<14.0.0,>=10.11.0->typer[all]<1.0,>=0.9->gradio) (2.16.1)\n",
            "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio->httpx->gradio) (1.2.0)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.19.3->gradio) (3.3.2)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.19.3->gradio) (2.0.7)\n",
            "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich<14.0.0,>=10.11.0->typer[all]<1.0,>=0.9->gradio) (0.1.2)\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install --upgrade typing\n",
        "\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "hkRt-nm-i7n3",
        "outputId": "fb8b64cf-1033-4ac3-a37b-6c2b47651645"
      },
      "execution_count": 12,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Requirement already satisfied: typing in /usr/local/lib/python3.10/dist-packages (3.7.4.3)\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import gradio as gr\n",
        "import skops.io as sio\n",
        "\n",
        "pipe = sio.load(\"glass_pipeline.skops\", trusted=True)\n",
        "\n",
        "classes = [\n",
        "    \"None\",\n",
        "    \"Building Windows Float Processed\",\n",
        "    \"Building Windows Non Float Processed\",\n",
        "    \"Vehicle Windows Float Processed\",\n",
        "    \"Vehicle Windows Non Float Processed\",\n",
        "    \"Containers\",\n",
        "    \"Tableware\",\n",
        "    \"Headlamps\",\n",
        "]\n",
        "\n",
        "\n",
        "def classifier(RI, Na, Mg, Al, Si, K, Ca, Ba, Fe):\n",
        "    pred_glass = pipe.predict([[RI, Na, Mg, Al, Si, K, Ca, Ba, Fe]])[0]\n",
        "    label = f\"Predicted Glass label: **{classes[pred_glass]}**\"\n",
        "    return label\n",
        "\n",
        "\n",
        "inputs = [\n",
        "    gr.Slider(1.51, 1.54, step=0.01, label=\"Refractive Index\"),\n",
        "    gr.Slider(10, 17, step=1, label=\"Sodium\"),\n",
        "    gr.Slider(0, 4.5, step=0.5, label=\"Magnesium\"),\n",
        "    gr.Slider(0.3, 3.5, step=0.1, label=\"Aluminum\"),\n",
        "    gr.Slider(69.8, 75.4, step=0.1, label=\"Silicon\"),\n",
        "    gr.Slider(0, 6.2, step=0.1, label=\"Potassium\"),\n",
        "    gr.Slider(5.4, 16.19, step=0.1, label=\"Calcium\"),\n",
        "    gr.Slider(0, 3, step=0.1, label=\"Barium\"),\n",
        "    gr.Slider(0, 0.5, step=0.1, label=\"Iron\"),\n",
        "]\n",
        "outputs = [gr.Label(num_top_classes=7)]\n",
        "\n",
        "title = \"Glass Classification\"\n",
        "description = \"Enter the details to correctly identify glass type?\"\n",
        "\n",
        "gr.Interface(\n",
        "    fn=classifier,\n",
        "    inputs=inputs,\n",
        "    outputs=outputs,\n",
        "    title=title,\n",
        "    description=description,\n",
        ").launch()"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "id": "A8KXp_EFiS1U",
        "outputId": "c021cdbf-b938-4951-f5e7-8bc0988e9d8a"
      },
      "execution_count": 1,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "Exception in thread Thread-5 (attachment_entry):\n",
            "Traceback (most recent call last):\n",
            "  File \"/usr/local/lib/python3.10/dist-packages/debugpy/server/api.py\", line 237, in listen\n",
            "    sock, _ = endpoints_listener.accept()\n",
            "  File \"/usr/lib/python3.10/socket.py\", line 293, in accept\n",
            "    fd, addr = self._accept()\n",
            "TimeoutError: timed out\n",
            "\n",
            "During handling of the above exception, another exception occurred:\n",
            "\n",
            "Traceback (most recent call last):\n",
            "  File \"/usr/lib/python3.10/threading.py\", line 1016, in _bootstrap_inner\n",
            "    self.run()\n",
            "  File \"/usr/lib/python3.10/threading.py\", line 953, in run\n",
            "    self._target(*self._args, **self._kwargs)\n",
            "  File \"/usr/local/lib/python3.10/dist-packages/google/colab/_debugpy.py\", line 52, in attachment_entry\n",
            "    debugpy.listen(_dap_port)\n",
            "  File \"/usr/local/lib/python3.10/dist-packages/debugpy/public_api.py\", line 31, in wrapper\n",
            "    return wrapped(*args, **kwargs)\n",
            "  File \"/usr/local/lib/python3.10/dist-packages/debugpy/server/api.py\", line 143, in debug\n",
            "    log.reraise_exception(\"{0}() failed:\", func.__name__, level=\"info\")\n",
            "  File \"/usr/local/lib/python3.10/dist-packages/debugpy/server/api.py\", line 141, in debug\n",
            "    return func(address, settrace_kwargs, **kwargs)\n",
            "  File \"/usr/local/lib/python3.10/dist-packages/debugpy/server/api.py\", line 251, in listen\n",
            "    raise RuntimeError(\"timed out waiting for adapter to connect\")\n",
            "RuntimeError: timed out waiting for adapter to connect\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
            "\n",
            "Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n",
            "Running on public URL: https://efa6ecf31e4b5a440c.gradio.live\n",
            "\n",
            "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ],
            "text/html": [
              "<div><iframe src=\"https://efa6ecf31e4b5a440c.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
            ]
          },
          "metadata": {}
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": []
          },
          "metadata": {},
          "execution_count": 1
        }
      ]
    }
  ],
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}