File size: 5,669 Bytes
255495b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# import torch
# import torchaudio
# from fairseq2.assets import InProcAssetMetadataProvider, asset_store
# from fairseq2.data import Collater, SequenceData
# from fairseq2.data.audio import (
#     AudioDecoder,
#     WaveformToFbankConverter,
#     WaveformToFbankOutput,
# )
# from fairseq2.generation import SequenceGeneratorOptions
# from fairseq2.memory import MemoryBlock
# from fairseq2.typing import DataType, Device
# from huggingface_hub import snapshot_download
# from seamless_communication.inference import BatchedSpeechOutput, Translator
# from seamless_communication.models.generator.loader import load_pretssel_vocoder_model
# from seamless_communication.models.unity import (
#     UnitTokenizer,
#     load_gcmvn_stats,
#     load_unity_text_tokenizer,
#     load_unity_unit_tokenizer,
# )
# from torch.nn import Module

# class PretsselGenerator(Module):
#     def __init__(
#         self,
#         pretssel_name_or_card: str,
#         unit_tokenizer: UnitTokenizer,
#         device: Device,
#         dtype: DataType = torch.float16,
#     ):
#         super().__init__()
#         # Load the model.
#         if device == torch.device("cpu"):
#             dtype = torch.float32


#         self.device = device
#         self.dtype = dtype

#         self.pretssel_model = load_pretssel_vocoder_model(
#             pretssel_name_or_card,
#             device=device,
#             dtype=dtype,
#         )
#         self.pretssel_model.eval()

#         vocoder_model_card = asset_store.retrieve_card(pretssel_name_or_card)
#         self.output_sample_rate = vocoder_model_card.field("sample_rate").as_(int)

#         self.unit_tokenizer = unit_tokenizer
#         self.unit_collate = Collater(pad_value=unit_tokenizer.vocab_info.pad_idx)
#         self.duration_collate = Collater(pad_value=0)

#     @torch.inference_mode()
#     def predict(
#         self,
#         units: list[list[int]],
#         tgt_lang: str,
#         prosody_encoder_input: SequenceData,
#     ) -> BatchedSpeechOutput:
#         audio_wavs = []
#         unit_eos_token = torch.tensor(
#             [self.unit_tokenizer.vocab_info.eos_idx],
#             device=self.device,
#         )

#         prosody_input_seqs = prosody_encoder_input["seqs"]
#         prosody_input_lens = prosody_encoder_input["seq_lens"]

#         for i, u in enumerate(units):
#             unit = torch.tensor(u).to(unit_eos_token)

#             # adjust the control symbols for the embedding
#             unit += 4
#             unit = torch.cat([unit, unit_eos_token], dim=0)

#             unit, duration = torch.unique_consecutive(unit, return_counts=True)

#             # adjust for the last eos token
#             duration[-1] = 0

#             duration *= 2

#             prosody_input_seq = prosody_input_seqs[i][: prosody_input_lens[i]]

#             audio_wav = self.pretssel_model(
#                 unit,
#                 tgt_lang,
#                 prosody_input_seq,
#                 durations=duration.unsqueeze(0),
#             )

#             audio_wavs.append(audio_wav)

#         return BatchedSpeechOutput(
#             units=units,
#             audio_wavs=audio_wavs,
#             sample_rate=self.output_sample_rate,
#         )


LANGUAGE_CODE_TO_NAME = {
    "afr": "Afrikaans",
    "amh": "Amharic",
    "arb": "Modern Standard Arabic",
    "ary": "Moroccan Arabic",
    "arz": "Egyptian Arabic",
    "asm": "Assamese",
    "ast": "Asturian",
    "azj": "North Azerbaijani",
    "bel": "Belarusian",
    "ben": "Bengali",
    "bos": "Bosnian",
    "bul": "Bulgarian",
    "cat": "Catalan",
    "ceb": "Cebuano",
    "ces": "Czech",
    "ckb": "Central Kurdish",
    "cmn": "Mandarin Chinese",
    "cym": "Welsh",
    "dan": "Danish",
    "deu": "German",
    "ell": "Greek",
    "eng": "English",
    "est": "Estonian",
    "eus": "Basque",
    "fin": "Finnish",
    "fra": "French",
    "gaz": "West Central Oromo",
    "gle": "Irish",
    "glg": "Galician",
    "guj": "Gujarati",
    "heb": "Hebrew",
    "hin": "Hindi",
    "hrv": "Croatian",
    "hun": "Hungarian",
    "hye": "Armenian",
    "ibo": "Igbo",
    "ind": "Indonesian",
    "isl": "Icelandic",
    "ita": "Italian",
    "jav": "Javanese",
    "jpn": "Japanese",
    "kam": "Kamba",
    "kan": "Kannada",
    "kat": "Georgian",
    "kaz": "Kazakh",
    "kea": "Kabuverdianu",
    "khk": "Halh Mongolian",
    "khm": "Khmer",
    "kir": "Kyrgyz",
    "kor": "Korean",
    "lao": "Lao",
    "lit": "Lithuanian",
    "ltz": "Luxembourgish",
    "lug": "Ganda",
    "luo": "Luo",
    "lvs": "Standard Latvian",
    "mai": "Maithili",
    "mal": "Malayalam",
    "mar": "Marathi",
    "mkd": "Macedonian",
    "mlt": "Maltese",
    "mni": "Meitei",
    "mya": "Burmese",
    "nld": "Dutch",
    "nno": "Norwegian Nynorsk",
    "nob": "Norwegian Bokm\u00e5l",
    "npi": "Nepali",
    "nya": "Nyanja",
    "oci": "Occitan",
    "ory": "Odia",
    "pan": "Punjabi",
    "pbt": "Southern Pashto",
    "pes": "Western Persian",
    "pol": "Polish",
    "por": "Portuguese",
    "ron": "Romanian",
    "rus": "Russian",
    "slk": "Slovak",
    "slv": "Slovenian",
    "sna": "Shona",
    "snd": "Sindhi",
    "som": "Somali",
    "spa": "Spanish",
    "srp": "Serbian",
    "swe": "Swedish",
    "swh": "Swahili",
    "tam": "Tamil",
    "tel": "Telugu",
    "tgk": "Tajik",
    "tgl": "Tagalog",
    "tha": "Thai",
    "tur": "Turkish",
    "ukr": "Ukrainian",
    "urd": "Urdu",
    "uzn": "Northern Uzbek",
    "vie": "Vietnamese",
    "xho": "Xhosa",
    "yor": "Yoruba",
    "yue": "Cantonese",
    "zlm": "Colloquial Malay",
    "zsm": "Standard Malay",
    "zul": "Zulu",
}