File size: 1,679 Bytes
90d20a8 cc187b3 90d20a8 5cfa681 90d20a8 5cfa681 90d20a8 3bc837e 90d20a8 3bc837e 90d20a8 3bc837e 90d20a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import streamlit as st
import pandas as pd
import numpy as np
import pickle
# Load All Files
# Model Logistic Regresi
with open('log_reg.pkl', 'rb') as file_1:
model_log_reg = pickle.load(file_1)
# Model Suppor Vector Classifier
with open('svc.pkl', 'rb') as file_2:
model_svc = pickle.load(file_2)
st.subheader('Prediksi Kelas Pendapatan')
# Nilai dari education num
education_num = st.slider('Pilih Total Tahun Pendidikan Formal',3,16)
# Nilai dari fitur capital gain
capital_gain = st.slider('Tentukan Capital Gain Per Tahun ( Dalam USD )',0,100000)
# Nilai dari fitur hours per week
hours_per_week = st.number_input('Masukkan Total Jam Kerja Per Minggu', 0, 80)
# value dari fitur new_occupation
occu = st.radio('Pilih Jenis Tingkat Pekerjaan',( 'Manager Up', 'Middle Worker', 'Low Worker', 'Others Service'))
# Value fitur sex
sex = st.radio('Pilih Jenis Kelamin',('Male', 'Female'))
if st.button('Predict'):
data_inf = pd.DataFrame({'education_num': education_num, 'capital_gain': capital_gain,
'hours_per_week': hours_per_week, 'new_occupation': occu, 'sex':sex},index=[0])
hasil_log_reg = model_log_reg.predict(data_inf)[0]
if hasil_log_reg == 0:
hasil_log_reg = 'Dibawah $ 50.000 Per Tahun'
else:
hasil_log_reg = 'Diatas $ 50.000 Per Tahun'
st.write(f'Kelas Pendapatan Anda Menurut Model Logistic Regression: {hasil_log_reg}')
hasil_svm = model_svc.predict(data_inf)[0]
if hasil_svm == 0:
hasil_svm = 'Dibawah $ 50.000 Per Tahun'
else:
hasil_svm = 'Diatas $ 50.000 Per Tahun'
st.write(f'Kelas Pendapatan Anda Menurut Model Logistic SVC : {hasil_svm}')
|