File size: 1,211 Bytes
4b9abf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import os
from fastapi import FastAPI
from pydantic import BaseModel
from huggingface_hub import InferenceClient

# Initialize FastAPI app
app = FastAPI()

# Get the API key securely from the environment variables
API_KEY = os.getenv("HF_API_KEY")  # The key name matches the one you set in Secrets
MODEL_NAME = "meta-llama/Llama-3.1-8B-Instruct"

# Initialize Hugging Face Inference Client
client = InferenceClient(api_key=API_KEY)

# Define input data model
class ChatInput(BaseModel):
    role: str
    content: str

@app.post("/chat")
async def chat(input_data: ChatInput):
    try:
        # Prepare input messages for the model
        messages = [
            {
                "role": input_data.role,
                "content": input_data.content
            }
        ]

        # Get completion from the Hugging Face model
        completion = client.chat.completions.create(
            model=MODEL_NAME,
            messages=messages,
            max_tokens=500
        )
        # Extract and return the response
        return {
            "response": completion.choices[0].message
        }
    except Exception as e:
        return {"error": str(e)}