File size: 7,988 Bytes
0666a2d f5dc719 0666a2d f5dc719 0666a2d 3215c20 0117db0 3215c20 0666a2d 0117db0 0666a2d f5dc719 3215c20 f5dc719 0666a2d 3215c20 fcb5546 0666a2d 3215c20 0666a2d 3215c20 0666a2d 3215c20 0666a2d 3215c20 0666a2d 3215c20 0666a2d 3215c20 922901f 0666a2d 922901f f5dc719 0666a2d f5dc719 0666a2d f5dc719 0666a2d 3215c20 0666a2d 3215c20 f5dc719 0666a2d 3215c20 0666a2d 3215c20 0666a2d 3215c20 0666a2d 3215c20 f5dc719 0666a2d 3215c20 0666a2d f5dc719 0666a2d 7323fd3 f5dc719 0666a2d f5dc719 0666a2d 3215c20 f5dc719 0666a2d 3215c20 f5dc719 0666a2d f5dc719 0666a2d 3215c20 27eb3e4 0666a2d 3215c20 27eb3e4 0666a2d 3215c20 0666a2d 3215c20 0666a2d 3215c20 0666a2d 3215c20 0666a2d 3215c20 0666a2d 3215c20 0666a2d 3215c20 0666a2d 3215c20 f5dc719 0666a2d 3215c20 0666a2d 3215c20 27eb3e4 0666a2d 0117db0 3215c20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
from flask import Flask, request, jsonify, Response
from faster_whisper import WhisperModel
import torch
import io
import time
import datetime
from threading import Semaphore
import os
from werkzeug.utils import secure_filename
import tempfile
from moviepy.editor import VideoFileClip
import logging
import torchaudio
import ffmpeg # 导入 ffmpeg-python
# 配置日志
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
app = Flask(__name__)
# 配置
MAX_CONCURRENT_REQUESTS = 2
MAX_FILE_DURATION = 60 * 30
TEMPORARY_FOLDER = tempfile.gettempdir()
ALLOWED_AUDIO_EXTENSIONS = {'mp3', 'wav', 'ogg', 'm4a', 'flac', 'aac', 'wma', 'opus', 'aiff'}
ALLOWED_VIDEO_EXTENSIONS = {'mp4', 'avi', 'mov', 'mkv', 'webm', 'flv', 'wmv', 'mpeg', 'mpg', '3gp'}
ALLOWED_EXTENSIONS = ALLOWED_AUDIO_EXTENSIONS.union(ALLOWED_VIDEO_EXTENSIONS)
API_KEY = os.environ.get("API_KEY")
MODEL_NAME = os.environ.get("WHISPER_MODEL", "guillaumekln/faster-whisper-large-v2")
# 设备检查
device = "cuda" if torch.cuda.is_available() else "cpu"
compute_type = "float16" if device == "cuda" else "int8"
logging.info(f"使用设备: {device},计算类型: {compute_type}")
# Faster Whisper 设置
beamsize = 2
try:
wmodel = WhisperModel(
MODEL_NAME,
device=device,
compute_type=compute_type,
download_root="./model_cache"
)
logging.info(f"模型 {MODEL_NAME} 加载成功.")
except Exception as e:
logging.error(f"加载模型 {MODEL_NAME} 失败: {e}")
wmodel = None
# 并发控制
request_semaphore = Semaphore(MAX_CONCURRENT_REQUESTS)
active_requests = 0
def validate_api_key(request):
api_key = request.headers.get('X-API-Key')
if api_key == API_KEY:
return True
else:
return False
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def cleanup_temp_files(*file_paths):
for file_path in file_paths:
try:
if file_path and os.path.exists(file_path):
os.remove(file_path)
logging.info(f"删除临时文件: {file_path}")
except Exception as e:
logging.error(f"删除临时文件 {file_path} 出错: {str(e)}")
def extract_audio_from_video(video_path, output_audio_path):
try:
# 使用 ffmpeg-python 调用 FFmpeg
ffmpeg.input(video_path).output(output_audio_path, acodec='pcm_s16le').run(capture_stdout=True, capture_stderr=True)
# or use with more options:
# ffmpeg.input(video_path).output(output_audio_path, acodec='pcm_s16le', ar=44100, ac=2).run(capture_stdout=True, capture_stderr=True)
# 检查视频时长
video = VideoFileClip(video_path) # moviepy
if video.duration > MAX_FILE_DURATION:
video.close()
raise ValueError(f"视频时长超过 {MAX_FILE_DURATION} 秒")
video.close()
return output_audio_path
except Exception as e:
logging.exception("提取视频中的音频出错")
raise Exception(f"提取视频中的音频出错: {str(e)}")
@app.route("/health", methods=["GET"])
def health_check():
return jsonify({
'status': 'API 正在运行',
'timestamp': datetime.datetime.now().isoformat(),
'device': device,
'compute_type': compute_type,
'active_requests': active_requests,
'max_duration_supported': MAX_FILE_DURATION,
'supported_formats': list(ALLOWED_EXTENSIONS),
'model': MODEL_NAME
})
@app.route("/status/busy", methods=["GET"])
def server_busy():
is_busy = active_requests >= MAX_CONCURRENT_REQUESTS
return jsonify({
'is_busy': is_busy,
'active_requests': active_requests,
'max_capacity': MAX_CONCURRENT_REQUESTS
})
@app.route("/whisper_transcribe", methods=["POST"])
def transcribe():
global active_requests
if not validate_api_key(request):
return jsonify({'error': '无效的 API 密钥'}), 401
if not request_semaphore.acquire(blocking=False):
return jsonify({'error': '服务器繁忙'}), 503
active_requests += 1
start_time = time.time()
temp_file_path = None
temp_audio_path = None
try:
if wmodel is None:
return jsonify({'error': '模型加载失败。请检查服务器日志。'}), 500
if 'file' not in request.files:
return jsonify({'error': '未提供文件'}), 400
file = request.files['file']
if not (file and allowed_file(file.filename)):
return jsonify({'error': f'无效的文件格式。支持:{", ".join(ALLOWED_EXTENSIONS)}'}), 400
# 保存上传的文件到临时位置
temp_file_path = os.path.join(TEMPORARY_FOLDER, secure_filename(file.filename))
file.save(temp_file_path)
# 检查是否是视频文件,如果是,则提取音频
file_extension = file.filename.rsplit('.', 1)[1].lower()
is_video = file_extension in ALLOWED_VIDEO_EXTENSIONS
if is_video:
temp_audio_path = os.path.join(TEMPORARY_FOLDER, f"temp_audio_{int(time.time())}.wav")
extract_audio_from_video(temp_file_path, temp_audio_path)
transcription_file = temp_audio_path
else:
transcription_file = temp_file_path
# 检查音频文件时长
try:
# 使用 torchaudio.load 加载音频,并指定格式
waveform, sample_rate = torchaudio.load(transcription_file, format=file_extension)
duration = waveform.size(1) / sample_rate
if duration > MAX_FILE_DURATION:
raise ValueError(f"音频时长超过 {MAX_FILE_DURATION} 秒")
except Exception as load_err:
logging.exception(f"使用 torchaudio.load 加载音频文件出错: {transcription_file}")
try:
# 尝试使用 soundfile 后端加载 (禁用 sox_io)
torchaudio.set_audio_backend("soundfile") # 强制使用 soundfile 后端
waveform, sample_rate = torchaudio.load(transcription_file) # 不要指定文件扩展名
duration = waveform.size(1) / sample_rate
if duration > MAX_FILE_DURATION:
raise ValueError(f"音频时长超过 {MAX_FILE_DURATION} 秒")
except Exception as soundfile_err:
logging.exception(f"使用 soundfile 后端加载音频文件出错: {transcription_file}")
return jsonify({'error': f'使用两个后端加载音频文件都出错: {str(soundfile_err)}'}), 400
finally:
torchaudio.set_audio_backend("default") # 恢复默认音频后端
# 转录音频文件
segments, _ = wmodel.transcribe(
transcription_file,
beam_size=beamsize,
vad_filter=True,
without_timestamps=True,
compression_ratio_threshold=2.4,
word_timestamps=False
)
full_text = " ".join(segment.text for segment in segments)
return jsonify({
'transcription': full_text,
'file_type': 'video' if is_video else 'audio'
}), 200
except Exception as e:
logging.exception("转录过程中发生异常")
return jsonify({'error': str(e)}), 500
finally:
cleanup_temp_files(temp_file_path, temp_audio_path)
active_requests -= 1
request_semaphore.release()
print(f"处理时间:{time.time() - start_time:.2f}s (活动请求:{active_requests})")
if __name__ == "__main__":
# 创建临时文件夹(如果不存在)
if not os.path.exists(TEMPORARY_FOLDER):
os.makedirs(TEMPORARY_FOLDER)
logging.info(f"创建临时文件夹: {TEMPORARY_FOLDER}")
app.run(host="0.0.0.0", port=7860, threaded=True)
|