Spaces:
Runtime error
Runtime error
File size: 5,727 Bytes
8c43b94 025efa1 8c43b94 bb1243f 8c43b94 025efa1 8c43b94 8c42239 9dc5640 8c42239 9dc5640 8c42239 9dc5640 8c42239 025efa1 cc5a389 025efa1 a10e5ed 8c42239 8c43b94 258a840 8c43b94 025efa1 d36b237 b3de1a8 8c42239 025efa1 f991108 8c42239 025efa1 f991108 8c42239 025efa1 f991108 8c43b94 8c42239 a10e5ed 8c42239 8c43b94 258a840 8c43b94 52e0c74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import os
from PIL import Image
import torch
import gradio as gr
import torch
torch.backends.cudnn.benchmark = True
from torchvision import transforms, utils
from util import *
from PIL import Image
import math
import random
import numpy as np
from torch import nn, autograd, optim
from torch.nn import functional as F
from tqdm import tqdm
import lpips
from model import *
#from e4e_projection import projection as e4e_projection
from copy import deepcopy
import imageio
import os
import sys
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
from argparse import Namespace
from e4e.utils.common import tensor2im
from e4e.models.psp import pSp
from e4e.models.encoders import psp_encoders
from util import *
from huggingface_hub import hf_hub_download
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
resize_dims = (256, 256)
device= 'cpu'
ffhq_model_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="e4e_ffhq512.pt")
ffhq_ckpt = torch.load(ffhq_model_path, map_location='cpu')
ffhq_latent_avg = ffhq_ckpt['latent_avg'].to(device)
ffhq_opts = ffhq_ckpt['opts']
ffhq_opts['checkpoint_path'] = ffhq_model_path
ffhq_opts= Namespace(**ffhq_opts)
ffhq_encoder = psp_encoders.Encoder4Editing(50, 'ir_se', ffhq_opts)
ffhq_e_filt = {k[len('encoder') + 1:]: v for k, v in ffhq_ckpt['state_dict'].items() if k[:len('encoder')] == 'encoder'}
ffhq_encoder.load_state_dict(ffhq_e_filt, strict=True)
ffhq_encoder.eval()
ffhq_encoder.to(device)
ffhq_decoder = Generator(512, 512, 8, channel_multiplier=2)
ffhq_d_filt = {k[len('decoder') + 1:]: v for k, v in ffhq_ckpt['state_dict'].items() if k[:len('decoder')] == 'decoder'}
ffhq_decoder.load_state_dict(ffhq_d_filt, strict=True)
ffhq_decoder.eval()
ffhq_decoder.to(device)
dog_model_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="e4e_ffhq512_dog.pt")
dog_ckpt = torch.load(dog_model_path, map_location='cpu')
dog_latent_avg = dog_ckpt['latent_avg'].to(device)
dog_opts = dog_ckpt['opts']
dog_opts['checkpoint_path'] = dog_model_path
dog_opts= Namespace(**dog_opts)
dog_encoder = psp_encoders.Encoder4Editing(50, 'ir_se', dog_opts)
dog_e_filt = {k[len('encoder') + 1:]: v for k, v in dog_ckpt['state_dict'].items() if k[:len('encoder')] == 'encoder'}
dog_encoder.load_state_dict(dog_e_filt, strict=True)
dog_encoder.eval()
dog_encoder.to(device)
dog_decoder = Generator(512, 512, 8, channel_multiplier=2)
dog_d_filt = {k[len('decoder') + 1:]: v for k, v in dog_ckpt['state_dict'].items() if k[:len('decoder')] == 'decoder'}
dog_decoder.load_state_dict(dog_d_filt, strict=True)
dog_decoder.eval()
dog_decoder.to(device)
cat_model_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="e4e_ffhq512_cat.pt")
cat_ckpt = torch.load(cat_model_path, map_location='cpu')
cat_latent_avg = cat_ckpt['latent_avg'].to(device)
cat_opts = cat_ckpt['opts']
cat_opts['checkpoint_path'] = cat_model_path
cat_opts= Namespace(**cat_opts)
cat_encoder = psp_encoders.Encoder4Editing(50, 'ir_se', cat_opts)
cat_e_filt = {k[len('encoder') + 1:]: v for k, v in cat_ckpt['state_dict'].items() if k[:len('encoder')] == 'encoder'}
cat_encoder.load_state_dict(cat_e_filt, strict=True)
cat_encoder.eval()
cat_encoder.to(device)
cat_decoder = Generator(512, 512, 8, channel_multiplier=2)
cat_d_filt = {k[len('decoder') + 1:]: v for k, v in cat_ckpt['state_dict'].items() if k[:len('decoder')] == 'decoder'}
cat_decoder.load_state_dict(cat_d_filt, strict=True)
cat_decoder.eval()
cat_decoder.to(device)
def run_alignment(image_path):
import dlib
from e4e.utils.alignment import align_face
dlib_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="shape_predictor_68_face_landmarks.dat")
predictor = dlib.shape_predictor(dlib_path)
aligned_image = align_face(filepath=image_path, predictor=predictor)
print("Aligned image has shape: {}".format(aligned_image.size))
return aligned_image
def gen_im(ffhq_codes, dog_codes, cat_codes, model_type='ffhq'):
if model_type=='ffhq':
imgs, _ = ffhq_decoder([ffhq_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
elif model_type=='dog':
imgs, _ = dog_decoder([dog_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
elif model_type=='cat':
imgs, _ = cat_decoder([cat_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
else:
imgs, _ = custom_decoder([custom_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
return tensor2im(imgs[0])
def inference(img):
img.save('out.jpg')
#aligned_face = align_face('out.jpg')
input_image = run_alignment('out.jpg')
transformed_image = transform(input_image)
ffhq_codes = ffhq_encoder(transformed_image.unsqueeze(0).to(device).float())
ffhq_codes = ffhq_codes + ffhq_latent_avg.repeat(ffhq_codes.shape[0], 1, 1)
cat_codes = cat_encoder(transformed_image.unsqueeze(0).to(device).float())
cat_codes = cat_codes + ffhq_latent_avg.repeat(cat_codes.shape[0], 1, 1)
dog_codes = dog_encoder(transformed_image.unsqueeze(0).to(device).float())
dog_codes = dog_codes + ffhq_latent_avg.repeat(dog_codes.shape[0], 1, 1)
animal = "cat"
npimage = gen_im(ffhq_codes, dog_codes, cat_codes, animal)
imageio.imwrite('filename.jpeg', npimage)
return 'filename.jpeg'
title = "PetBreeder v1.1"
description = "Gradio Demo for PetBreeder."
gr.Interface(inference,
[gr.inputs.Image(type="pil")],
gr.outputs.Image(type="file"),
title=title,
description=description).launch()
|