File size: 5,727 Bytes
8c43b94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
025efa1
8c43b94
bb1243f
8c43b94
 
 
025efa1
 
 
 
 
 
8c43b94
8c42239
 
 
9dc5640
8c42239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dc5640
8c42239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dc5640
8c42239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
025efa1
 
 
cc5a389
 
025efa1
 
 
 
 
a10e5ed
8c42239
 
 
 
 
 
 
 
 
8c43b94
 
258a840
8c43b94
025efa1
d36b237
b3de1a8
8c42239
025efa1
f991108
8c42239
025efa1
f991108
8c42239
025efa1
f991108
8c43b94
8c42239
a10e5ed
8c42239
8c43b94
 
 
258a840
 
8c43b94
52e0c74
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
from PIL import Image
import torch
import gradio as gr
import torch
torch.backends.cudnn.benchmark = True
from torchvision import transforms, utils
from util import *
from PIL import Image
import math
import random
import numpy as np
from torch import nn, autograd, optim
from torch.nn import functional as F
from tqdm import tqdm
import lpips
from model import *

#from e4e_projection import projection as e4e_projection

from copy import deepcopy
import imageio

import os
import sys
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
from argparse import Namespace
from e4e.utils.common import tensor2im
from e4e.models.psp import pSp
from e4e.models.encoders import psp_encoders
from util import *
from huggingface_hub import hf_hub_download

transform = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.ToTensor(),
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
resize_dims = (256, 256)

device= 'cpu'
ffhq_model_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="e4e_ffhq512.pt")

ffhq_ckpt = torch.load(ffhq_model_path, map_location='cpu')
ffhq_latent_avg = ffhq_ckpt['latent_avg'].to(device)
ffhq_opts = ffhq_ckpt['opts']
ffhq_opts['checkpoint_path'] = ffhq_model_path
ffhq_opts= Namespace(**ffhq_opts)

ffhq_encoder = psp_encoders.Encoder4Editing(50, 'ir_se', ffhq_opts)
ffhq_e_filt = {k[len('encoder') + 1:]: v for k, v in ffhq_ckpt['state_dict'].items() if k[:len('encoder')] == 'encoder'}
ffhq_encoder.load_state_dict(ffhq_e_filt, strict=True)
ffhq_encoder.eval()
ffhq_encoder.to(device)

ffhq_decoder = Generator(512, 512, 8, channel_multiplier=2)
ffhq_d_filt = {k[len('decoder') + 1:]: v for k, v in ffhq_ckpt['state_dict'].items() if k[:len('decoder')] == 'decoder'}
ffhq_decoder.load_state_dict(ffhq_d_filt, strict=True)
ffhq_decoder.eval()
ffhq_decoder.to(device)

dog_model_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="e4e_ffhq512_dog.pt")

dog_ckpt = torch.load(dog_model_path, map_location='cpu')
dog_latent_avg = dog_ckpt['latent_avg'].to(device)
dog_opts = dog_ckpt['opts']
dog_opts['checkpoint_path'] = dog_model_path
dog_opts= Namespace(**dog_opts)

dog_encoder = psp_encoders.Encoder4Editing(50, 'ir_se', dog_opts)
dog_e_filt = {k[len('encoder') + 1:]: v for k, v in dog_ckpt['state_dict'].items() if k[:len('encoder')] == 'encoder'}
dog_encoder.load_state_dict(dog_e_filt, strict=True)
dog_encoder.eval()
dog_encoder.to(device)

dog_decoder = Generator(512, 512, 8, channel_multiplier=2)
dog_d_filt = {k[len('decoder') + 1:]: v for k, v in dog_ckpt['state_dict'].items() if k[:len('decoder')] == 'decoder'}
dog_decoder.load_state_dict(dog_d_filt, strict=True)
dog_decoder.eval()
dog_decoder.to(device)

cat_model_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="e4e_ffhq512_cat.pt")

cat_ckpt = torch.load(cat_model_path, map_location='cpu')
cat_latent_avg = cat_ckpt['latent_avg'].to(device)
cat_opts = cat_ckpt['opts']
cat_opts['checkpoint_path'] = cat_model_path
cat_opts= Namespace(**cat_opts)

cat_encoder = psp_encoders.Encoder4Editing(50, 'ir_se', cat_opts)
cat_e_filt = {k[len('encoder') + 1:]: v for k, v in cat_ckpt['state_dict'].items() if k[:len('encoder')] == 'encoder'}
cat_encoder.load_state_dict(cat_e_filt, strict=True)
cat_encoder.eval()
cat_encoder.to(device)

cat_decoder = Generator(512, 512, 8, channel_multiplier=2)
cat_d_filt = {k[len('decoder') + 1:]: v for k, v in cat_ckpt['state_dict'].items() if k[:len('decoder')] == 'decoder'}
cat_decoder.load_state_dict(cat_d_filt, strict=True)
cat_decoder.eval()
cat_decoder.to(device)


def run_alignment(image_path):
  import dlib
  from e4e.utils.alignment import align_face
  dlib_path = hf_hub_download(repo_id="bankholdup/stylegan_petbreeder", filename="shape_predictor_68_face_landmarks.dat")
  predictor = dlib.shape_predictor(dlib_path)
  aligned_image = align_face(filepath=image_path, predictor=predictor) 
  print("Aligned image has shape: {}".format(aligned_image.size))
  return aligned_image


def gen_im(ffhq_codes, dog_codes, cat_codes, model_type='ffhq'):
  if model_type=='ffhq':
    imgs, _ = ffhq_decoder([ffhq_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
  elif model_type=='dog':
    imgs, _ = dog_decoder([dog_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
  elif model_type=='cat':
    imgs, _ = cat_decoder([cat_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
  else:
    imgs, _ = custom_decoder([custom_codes], input_is_latent=True, randomize_noise=False, return_latents=True)
  return tensor2im(imgs[0])


def inference(img):  
    img.save('out.jpg')  
    #aligned_face = align_face('out.jpg')
    input_image = run_alignment('out.jpg')
    transformed_image = transform(input_image)
	
    ffhq_codes = ffhq_encoder(transformed_image.unsqueeze(0).to(device).float())
    ffhq_codes = ffhq_codes + ffhq_latent_avg.repeat(ffhq_codes.shape[0], 1, 1)

    cat_codes = cat_encoder(transformed_image.unsqueeze(0).to(device).float())
    cat_codes = cat_codes + ffhq_latent_avg.repeat(cat_codes.shape[0], 1, 1)

    dog_codes = dog_encoder(transformed_image.unsqueeze(0).to(device).float())
    dog_codes = dog_codes + ffhq_latent_avg.repeat(dog_codes.shape[0], 1, 1)
        
    animal = "cat"
    npimage = gen_im(ffhq_codes, dog_codes, cat_codes, animal)
	
    imageio.imwrite('filename.jpeg', npimage)
    return 'filename.jpeg'
  
title = "PetBreeder v1.1"
description = "Gradio Demo for PetBreeder."

gr.Interface(inference, 
[gr.inputs.Image(type="pil")], 
gr.outputs.Image(type="file"),
title=title,
description=description).launch()