Spaces:
Runtime error
Runtime error
File size: 7,188 Bytes
8c43b94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
from enum import Enum
import math
import numpy as np
import torch
from torch import nn
from torch.nn import Conv2d, BatchNorm2d, PReLU, Sequential, Module
from e4e.models.encoders.helpers import get_blocks, bottleneck_IR, bottleneck_IR_SE, _upsample_add
from e4e.models.stylegan2.model import EqualLinear
class ProgressiveStage(Enum):
WTraining = 0
Delta1Training = 1
Delta2Training = 2
Delta3Training = 3
Delta4Training = 4
Delta5Training = 5
Delta6Training = 6
Delta7Training = 7
Delta8Training = 8
Delta9Training = 9
Delta10Training = 10
Delta11Training = 11
Delta12Training = 12
Delta13Training = 13
Delta14Training = 14
Delta15Training = 15
Delta16Training = 16
Delta17Training = 17
Inference = 18
class GradualStyleBlock(Module):
def __init__(self, in_c, out_c, spatial):
super(GradualStyleBlock, self).__init__()
self.out_c = out_c
self.spatial = spatial
num_pools = int(np.log2(spatial))
modules = []
modules += [Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1),
nn.LeakyReLU()]
for i in range(num_pools - 1):
modules += [
Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1),
nn.LeakyReLU()
]
self.convs = nn.Sequential(*modules)
self.linear = EqualLinear(out_c, out_c, lr_mul=1)
def forward(self, x):
x = self.convs(x)
x = x.view(-1, self.out_c)
x = self.linear(x)
return x
class GradualStyleEncoder(Module):
def __init__(self, num_layers, mode='ir', opts=None):
super(GradualStyleEncoder, self).__init__()
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
blocks = get_blocks(num_layers)
if mode == 'ir':
unit_module = bottleneck_IR
elif mode == 'ir_se':
unit_module = bottleneck_IR_SE
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
BatchNorm2d(64),
PReLU(64))
modules = []
for block in blocks:
for bottleneck in block:
modules.append(unit_module(bottleneck.in_channel,
bottleneck.depth,
bottleneck.stride))
self.body = Sequential(*modules)
self.styles = nn.ModuleList()
log_size = int(math.log(opts.stylegan_size, 2))
self.style_count = 2 * log_size - 2
self.coarse_ind = 3
self.middle_ind = 7
for i in range(self.style_count):
if i < self.coarse_ind:
style = GradualStyleBlock(512, 512, 16)
elif i < self.middle_ind:
style = GradualStyleBlock(512, 512, 32)
else:
style = GradualStyleBlock(512, 512, 64)
self.styles.append(style)
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0)
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0)
def forward(self, x):
x = self.input_layer(x)
latents = []
modulelist = list(self.body._modules.values())
for i, l in enumerate(modulelist):
x = l(x)
if i == 6:
c1 = x
elif i == 20:
c2 = x
elif i == 23:
c3 = x
for j in range(self.coarse_ind):
latents.append(self.styles[j](c3))
p2 = _upsample_add(c3, self.latlayer1(c2))
for j in range(self.coarse_ind, self.middle_ind):
latents.append(self.styles[j](p2))
p1 = _upsample_add(p2, self.latlayer2(c1))
for j in range(self.middle_ind, self.style_count):
latents.append(self.styles[j](p1))
out = torch.stack(latents, dim=1)
return out
class Encoder4Editing(Module):
def __init__(self, num_layers, mode='ir', opts=None):
super(Encoder4Editing, self).__init__()
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
blocks = get_blocks(num_layers)
if mode == 'ir':
unit_module = bottleneck_IR
elif mode == 'ir_se':
unit_module = bottleneck_IR_SE
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
BatchNorm2d(64),
PReLU(64))
modules = []
for block in blocks:
for bottleneck in block:
modules.append(unit_module(bottleneck.in_channel,
bottleneck.depth,
bottleneck.stride))
self.body = Sequential(*modules)
self.styles = nn.ModuleList()
log_size = int(math.log(opts.stylegan_size, 2))
self.style_count = 2 * log_size - 2
self.coarse_ind = 3
self.middle_ind = 7
for i in range(self.style_count):
if i < self.coarse_ind:
style = GradualStyleBlock(512, 512, 16)
elif i < self.middle_ind:
style = GradualStyleBlock(512, 512, 32)
else:
style = GradualStyleBlock(512, 512, 64)
self.styles.append(style)
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0)
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0)
self.progressive_stage = ProgressiveStage.Inference
def get_deltas_starting_dimensions(self):
''' Get a list of the initial dimension of every delta from which it is applied '''
return list(range(self.style_count)) # Each dimension has a delta applied to it
def set_progressive_stage(self, new_stage: ProgressiveStage):
self.progressive_stage = new_stage
print('Changed progressive stage to: ', new_stage)
def forward(self, x):
x = self.input_layer(x)
modulelist = list(self.body._modules.values())
for i, l in enumerate(modulelist):
x = l(x)
if i == 6:
c1 = x
elif i == 20:
c2 = x
elif i == 23:
c3 = x
# Infer main W and duplicate it
w0 = self.styles[0](c3)
w = w0.repeat(self.style_count, 1, 1).permute(1, 0, 2)
stage = self.progressive_stage.value
features = c3
for i in range(1, min(stage + 1, self.style_count)): # Infer additional deltas
if i == self.coarse_ind:
p2 = _upsample_add(c3, self.latlayer1(c2)) # FPN's middle features
features = p2
elif i == self.middle_ind:
p1 = _upsample_add(p2, self.latlayer2(c1)) # FPN's fine features
features = p1
delta_i = self.styles[i](features)
w[:, i] += delta_i
return w
|