File size: 8,740 Bytes
2cb00ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610e12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cb00ee
 
 
 
 
 
610e12a
 
 
 
 
 
 
9c50a84
 
610e12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c50a84
610e12a
 
9c50a84
 
610e12a
2cb00ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610e12a
 
 
 
 
 
 
 
 
 
 
 
2cb00ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c50a84
7033de3
9c50a84
 
7033de3
9c50a84
7033de3
9c50a84
2cb00ee
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import streamlit as st
import google.generativeai as genai
from PIL import Image
import fitz  # PyMuPDF
from docx import Document
import json
from pathlib import Path
from datetime import datetime
import re
import pytesseract
import io

def extract_text_from_pdf(pdf_file):
    """Extract text from uploaded PDF file."""
    text_content = []
    try:
        pdf_bytes = pdf_file.read()
        doc = fitz.open(stream=pdf_bytes, filetype="pdf")
        for page_num in range(len(doc)):
            page = doc[page_num]
            text_content.append(page.get_text())
        return "\n".join(text_content)
    except Exception as e:
        st.error(f"Error in PDF extraction: {str(e)}")
        return ""

def extract_text_from_docx(docx_file):
    """Extract text from uploaded DOCX file."""
    try:
        doc = Document(docx_file)
        text_content = []
        for paragraph in doc.paragraphs:
            text_content.append(paragraph.text)
        return "\n".join(text_content)
    except Exception as e:
        st.error(f"Error in DOCX extraction: {str(e)}")
        return ""

def parse_date(date_str):
    """Parse date from various formats."""
    try:
        # Handle 'Present' or 'Current'
        if date_str.lower() in ['present', 'current', 'now']:
            return datetime.now()

        date_str = date_str.strip()

        formats = [
            '%Y', '%b %Y', '%B %Y', '%m/%Y', '%m-%Y',
            '%Y/%m', '%Y-%m'
        ]

        for fmt in formats:
            try:
                return datetime.strptime(date_str, fmt)
            except ValueError:
                continue

        year_match = re.search(r'\b20\d{2}\b', date_str)
        if year_match:
            return datetime.strptime(year_match.group(), '%Y')

        return None
    except Exception:
        return None

def calculate_experience(work_history):
    """Calculate total years of experience from work history."""
    total_experience = 0
    current_year = datetime.now().year

    for job in work_history:
        duration = job.get('duration', '')
        if not duration:
            continue

        parts = re.split(r'\s*-\s*|\s+to\s+', duration)
        if len(parts) != 2:
            continue

        start_date = parse_date(parts[0])
        end_date = parse_date(parts[1])

        if start_date and end_date:
            years = (end_date.year - start_date.year) + \
                   (end_date.month - start_date.month) / 12
            total_experience += max(0, years)

    return round(total_experience, 1)

def parse_resume(file_uploaded, api_key):
    """Parse resume and extract information."""
    genai.configure(api_key=api_key)
    model = genai.GenerativeModel('gemini-1.5-pro')

    prompt = """Extract the following information from this resume:
    1. Summarize the following resume in 100 words, focusing on key skills, experience, and qualifications
    2. Full Name
    3. Email Address
    4. Phone Number
    5. Education History (including degree, institution, graduation year, and field of study)
    6. Companies worked at with positions and EXACT duration (e.g., "Jan 2020 - Present" or "2018-2020")
    7. Skills
    8. LinkedIn Profile URL

    Return the information in this JSON format:
    {
        "summary": "",
        "name": "",
        "email": "",
        "phone": "",
        "education": [
            {
                "degree": "",
                "institution": "",
                "year": "",
                "field": "",
                "gpa": ""
            }
        ],
        "work_experience": [
            {
                "company": "",
                "position": "",
                "duration": ""
            }
        ],
        "skills": [],
        "linkedin": ""
    }
    For skills include tools and technologies in output if present any in resume.
    For work experience durations, please specify exact dates in format: "MMM YYYY - MMM YYYY" or "YYYY - Present" , please return in one order either in ascending or descending.
    Only return the JSON object, nothing else. If any field is not found, leave it empty."""

    try:
        file_extension = Path(file_uploaded.name).suffix.lower()
        
        if file_extension == '.pdf':
            text_content = extract_text_from_pdf(file_uploaded)
        elif file_extension in ['.docx', '.doc']:
            text_content = extract_text_from_docx(file_uploaded)
        elif file_extension in ['.jpg', '.jpeg', '.png']:
            image = Image.open(file_uploaded)
            text_content = pytesseract.image_to_string(image)
        else:
            st.error(f"Unsupported file format: {file_extension}")
            return None

        response = model.generate_content(f"{prompt}\n\nResume Text:\n{text_content}")
        
        try:
            response_text = response.text
            json_start = response_text.find('{')
            json_end = response_text.rfind('}') + 1
            json_str = response_text[json_start:json_end]
            
            result = json.loads(json_str)
            total_exp = calculate_experience(result.get('work_experience', []))
            result['total_years_experience'] = total_exp
            
            return result
        except json.JSONDecodeError as e:
            st.error(f"Error parsing response: {str(e)}")
            return None

    except Exception as e:
        st.error(f"Error processing resume: {str(e)}")
        return None

def format_education(edu):
    """Format education details for display."""
    parts = []
    if edu.get('degree'):
        parts.append(edu['degree'])
    if edu.get('field'):
        parts.append(f"in {edu['field']}")
    if edu.get('institution'):
        parts.append(f"from {edu['institution']}")
    if edu.get('year'):
        parts.append(f"({edu['year']})")
    if edu.get('gpa') and edu['gpa'].strip():
        parts.append(f"- GPA: {edu['gpa']}")
    return " ".join(parts)

def main():
    st.title("Resume Parser")
    st.write("Upload a resume (PDF, DOCX, or Image) to extract information")

    # Get API key from secrets or user input
    api_key = st.secrets["GEMINI_API_KEY"] if "GEMINI_API_KEY" in st.secrets else st.text_input("Enter Gemini API Key", type="password")

    uploaded_file = st.file_uploader("Choose a resume file", type=["pdf", "docx", "doc", "jpg", "jpeg", "png"])

    if uploaded_file and api_key:
        with st.spinner('Analyzing resume...'):
            result = parse_resume(uploaded_file, api_key)

            if result:
                st.subheader("Extracted Information")
                
                # Display summary in a text area
                st.text_area("Summary", result.get('summary', 'Not found'), height=100)
                
                # Display personal information
                col1, col2, col3 = st.columns(3)
                with col1:
                    st.write("**Name:**", result.get('name', 'Not found'))
                with col2:
                    st.write("**Email:**", result.get('email', 'Not found'))
                with col3:
                    st.write("**Phone:**", result.get('phone', 'Not found'))

                # Display total experience
                total_exp = result.get('total_years_experience', 0)
                exp_text = f"{total_exp:.1f} years" if total_exp >= 1 else f"{total_exp * 12:.0f} months"
                st.write("**Total Experience:**", exp_text)

                # Display education
                st.subheader("Education")
                if result.get('education'):
                    for edu in result['education']:
                        st.write(f"- {format_education(edu)}")
                else:
                    st.write("No education information found")

                # Display work experience
                st.subheader("Work Experience")
                if result.get('work_experience'):
                    for exp in result['work_experience']:
                        duration = f" ({exp.get('duration', 'Duration not specified')})" if exp.get('duration') else ""
                        st.write(f"- {exp.get('position', 'Role not found')} at {exp.get('company', 'Company not found')}{duration}")
                else:
                    st.write("No work experience found")

                # Display Skills
                st.subheader("Skills:")
                if result.get('skills'):
                    for skill in result['skills']:
                        st.write(f"- {skill}")
                else:
                    st.write("- No skills found")

                # Display LinkedIn profile
                st.write("**LinkedIn Profile:**", result.get('linkedin', 'Not found'))

if __name__ == "__main__":
    main()