File size: 6,639 Bytes
eaf2e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import torch.nn.functional as F
from stable_baselines3.common.utils import polyak_update
from torch.optim import Adam
from src.drl.nets import *


class SoftActor:
    def __init__(self, net_constructor, tar_ent=None):
        self.net = net_constructor()
        self.optimiser = Adam(self.net.parameters(), 3e-4)
        self.alpha_coe = LearnableLogCoeffient()
        self.alpha_optimiser = Adam(self.alpha_coe.parameters(), 3e-4)
        self.tar_ent = -self.net.act_dim if tar_ent is None else tar_ent
        self.device = 'cpu'
        pass

    def to(self, device):
        self.net.to(device)
        self.alpha_coe.to(device)
        self.device = device

    def eval(self):
        self.net.eval()

    def train(self):
        self.net.train_NCESAC()

    def forward(self, obs, grad=True, deterministic=False):
        if grad:
            return self.net(obs, deterministic)
        with torch.no_grad():
            return self.net(obs, deterministic)

    def backward_policy(self, critic, obs, coe=1.):
        acts, logps = self.forward(obs)
        qvalues = critic.forward(obs, acts)
        a_loss = coe * (self.alpha_coe(logps, grad=False) - qvalues).mean()
        a_loss.backward()

    def backward_alpha(self, obs):
        _, logps = self.forward(obs, grad=False)
        loss_alpha = -(self.alpha_coe(logps + self.tar_ent)).mean()
        loss_alpha.backward()
        pass

    def zero_grads(self):
        self.optimiser.zero_grad()
        self.alpha_optimiser.zero_grad()

    def grad_step(self):
        self.optimiser.step()
        self.alpha_optimiser.step()

    def get_nn_arch_str(self):
        return str(self.net) + '\n'


class SoftDoubleClipCriticQ:
    def __init__(self, nn_constructor, gamma=0.99, tau=0.005):
        self.net1 = nn_constructor()
        self.net2 = nn_constructor()
        self.tar_net1 = nn_constructor()
        self.tar_net2 = nn_constructor()
        self.tar_net1.load_state_dict(self.net1.state_dict())
        self.tar_net2.load_state_dict(self.net2.state_dict())
        self.opt1 = Adam(self.net1.parameters(), 3e-4)
        self.opt2 = Adam(self.net2.parameters(), 3e-4)
        self.device = 'cpu'
        self.gamma = gamma
        self.tau = tau

    def to(self, device):
        self.net1.to(device)
        self.net2.to(device)
        self.tar_net1.to(device)
        self.tar_net2.to(device)
        self.device = device

    def forward(self, obs, acts, grad=True, tar=False):
        def foo():
            if tar:
                q1 = self.tar_net1(obs, acts)
                q2 = self.tar_net2(obs, acts)
            else:
                q1 = self.net1(obs, acts)
                q2 = self.net2(obs, acts)
            return torch.minimum(q1, q2)
        if grad:
            return foo()
        with torch.no_grad():
            return foo()

    def compute_target(self, actor, rews, ops):
        aps, logpi_aps = actor.forward(ops, grad=False)
        qps = self.forward(ops, aps, tar=True, grad=False)
        y = rews + self.gamma * (qps - actor.alpha_coe(logpi_aps, False))
        return y

    def backward_mse(self, actor, obs, acts, rews, ops):
        y = self.compute_target(actor, rews, ops)
        loss1 = F.mse_loss(self.net1(obs, acts), y)
        loss2 = F.mse_loss(self.net2(obs, acts), y)
        loss1.backward()
        loss2.backward()

    def update_tarnet(self):
        polyak_update(self.net1.parameters(), self.tar_net1.parameters(), self.tau)
        polyak_update(self.net2.parameters(), self.tar_net2.parameters(), self.tau)

    def zero_grads(self):
        self.opt1.zero_grad()
        self.opt2.zero_grad()

    def grad_step(self):
        self.opt1.step()
        self.opt2.step()

    def get_nn_arch_str(self):
        return str(self.net1) + '\n' + str(self.net2) + '\n'


class MERegMixSoftActor(SoftActor):
    def __init__(self, net_constructor, me_reg, tar_ent=None):
        super(MERegMixSoftActor, self).__init__(net_constructor, tar_ent)
        self.me_reg = me_reg

    def forward(self, obs, grad=True, mono=True):
        if grad:
            return self.net(obs, mono)
        with torch.no_grad():
            return self.net(obs, mono)

    def backward_me_reg(self, critic_W, obs):
        muss, stdss, betas = self.net.get_intermediate(obs)
        loss1 = -torch.mean(self.me_reg.forward(muss, stdss, betas))
        actss, _, _ = esmb_sample(muss, stdss, betas, mono=False)
        wvaluess = critic_W.forward(obs, actss)
        loss2 = -(betas * wvaluess).mean()
        loss = loss1 + loss2
        loss.backward()
        pass

    def backward_policy(self, critic, obs):
        actss, logpss, betas = self.forward(obs, mono=False)
        qvaluess = critic.forward(obs, actss)
        a_loss = (betas * (self.alpha_coe(logpss, grad=False) - qvaluess)).mean()
        a_loss.backward()
        pass

    def backward_alpha(self, obs):
        _, logps = self.forward(obs, grad=False)
        loss_alpha = -(self.alpha_coe(logps + self.tar_ent)).mean()
        loss_alpha.backward()
        pass


class MERegSoftDoubleClipCriticQ(SoftDoubleClipCriticQ):
    def forward(self, obs, actss, grad=True, tar=False):
        def foo():
            obss = torch.unsqueeze(obs, dim=1).expand(-1, actss.shape[1], -1)
            if tar:
                q1 = self.tar_net1(obss, actss)
                q2 = self.tar_net2(obss, actss)
            else:
                q1 = self.net1(obss, actss)
                q2 = self.net2(obss, actss)
            return torch.minimum(q1, q2)
        if grad:
            return foo()
        with torch.no_grad():
            return foo()

    def compute_target(self, actor, rews, ops):
        apss, logpss, betaps = actor.forward(ops, grad=False, mono=False)
        qpss = self.forward(ops, apss, tar=True, grad=False)
        qps = (betaps * (qpss.squeeze() - actor.alpha_coe(logpss, grad=False))).sum(dim=-1)
        y = rews + self.gamma * qps
        return y
    pass


class MERegDoubleClipCriticW(MERegSoftDoubleClipCriticQ):
    def compute_target(self, actor, rews, ops):
        with torch.no_grad():
            mupss, stdpss, betaps = actor.net.get_intermediate(ops)
            me_regps = actor.me_reg.forward(mupss, stdpss, betaps)
            apss, *_ = esmb_sample(mupss, stdpss, betaps, mono=False)
            wpss = self.forward(ops, apss, tar=True, grad=False)
            y = me_regps + (betaps * wpss).sum(dim=-1)
        return self.gamma * y
    pass



if __name__ == '__main__':
    a = torch.tensor([[[1., 1.], [2., 2.], [3., 3.]]], requires_grad=True)
    b = a.detach().mean(-1)
    print(a)
    print(b)
    pass