File size: 11,491 Bytes
eaf2e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
from collections import deque, OrderedDict

from src.rlkit.core.eval_util import create_stats_ordered_dict
from src.rlkit.samplers.rollout_functions import rollout, multitask_rollout, ensemble_rollout, ensemble_eval_rollout
from src.rlkit.samplers.rollout_functions import ensemble_ucb_rollout
from src.rlkit.samplers.data_collector.base import PathCollector

class MdpPathCollector(PathCollector):
    def __init__(
            self,
            env,
            policy,
            noise_flag=0,
            max_num_epoch_paths_saved=None,
            render=False,
            render_kwargs=None,
    ):
        if render_kwargs is None:
            render_kwargs = {}
        self._env = env
        self._policy = policy
        self._max_num_epoch_paths_saved = max_num_epoch_paths_saved
        self._epoch_paths = deque(maxlen=self._max_num_epoch_paths_saved)
        self._render = render
        self._render_kwargs = render_kwargs
        self._noise_flag = noise_flag
        
        self._num_steps_total = 0
        self._num_paths_total = 0

    def collect_new_paths(
            self,
            max_path_length,
            num_steps,
            discard_incomplete_paths,
    ):
        paths = []
        num_steps_collected = 0
        while num_steps_collected < num_steps:
            max_path_length_this_loop = min(  # Do not go over num_steps
                max_path_length,
                num_steps - num_steps_collected,
            )
            path = rollout(
                self._env,
                self._policy,
                noise_flag=self._noise_flag,
                max_path_length=max_path_length_this_loop,
            )
            path_len = len(path['actions'])
            if (
                    path_len != max_path_length
                    and not path['terminals'][-1]
                    and discard_incomplete_paths
            ):
                break
            num_steps_collected += path_len
            paths.append(path)
        self._num_paths_total += len(paths)
        self._num_steps_total += num_steps_collected
        self._epoch_paths.extend(paths)
        return paths

    def collect_normalized_new_paths(
            self,
            max_path_length,
            num_steps,
            discard_incomplete_paths,
            input_mean,
            input_std,
    ):
        paths = []
        num_steps_collected = 0
        while num_steps_collected < num_steps:
            max_path_length_this_loop = min(  # Do not go over num_steps
                max_path_length,
                num_steps - num_steps_collected,
            )
            path = normalized_rollout(
                self._env,
                self._policy,
                noise_flag=self._noise_flag,
                max_path_length=max_path_length_this_loop,
                input_mean=input_mean,
                input_std=input_std,
            )
            path_len = len(path['actions'])
            if (
                    path_len != max_path_length
                    and not path['terminals'][-1]
                    and discard_incomplete_paths
            ):
                break
            num_steps_collected += path_len
            paths.append(path)
        self._num_paths_total += len(paths)
        self._num_steps_total += num_steps_collected
        self._epoch_paths.extend(paths)
        return paths
    
    def get_epoch_paths(self):
        return self._epoch_paths

    def end_epoch(self, epoch):
        self._epoch_paths = deque(maxlen=self._max_num_epoch_paths_saved)

    def get_diagnostics(self):
        path_lens = [len(path['actions']) for path in self._epoch_paths]
        stats = OrderedDict([
            ('num steps total', self._num_steps_total),
            ('num paths total', self._num_paths_total),
        ])
        stats.update(create_stats_ordered_dict(
            "path length",
            path_lens,
            always_show_all_stats=True,
        ))
        return stats

    def get_snapshot(self):
        return dict(
            env=self._env,
            policy=self._policy,
        )
    
    
class EnsembleMdpPathCollector(PathCollector):
    def __init__(
            self,
            env,
            policy,
            num_ensemble,
            noise_flag=0,
            ber_mean=0.5,
            eval_flag=False,
            max_num_epoch_paths_saved=None,
            render=False,
            render_kwargs=None,
            critic1=None,
            critic2=None,
            inference_type=0.0,
            feedback_type=1,
    ):
        if render_kwargs is None:
            render_kwargs = {}
        self._env = env
        self._policy = policy
        self._max_num_epoch_paths_saved = max_num_epoch_paths_saved
        self._epoch_paths = deque(maxlen=self._max_num_epoch_paths_saved)
        self._render = render
        self._render_kwargs = render_kwargs
        self.num_ensemble = num_ensemble
        self.eval_flag = eval_flag
        self.ber_mean = ber_mean
        self.critic1 = critic1
        self.critic2 = critic2
        self.inference_type = inference_type
        self.feedback_type = feedback_type
        self._noise_flag = noise_flag
        
        self._num_steps_total = 0
        self._num_paths_total = 0

    def collect_new_paths(
            self,
            max_path_length,
            num_steps,
            discard_incomplete_paths,
    ):
        paths = []
        num_steps_collected = 0
        while num_steps_collected < num_steps:
            max_path_length_this_loop = min(  # Do not go over num_steps
                max_path_length,
                num_steps - num_steps_collected,
            )
            if self.eval_flag:
                path = ensemble_eval_rollout(
                    self._env,
                    self._policy,
                    self.num_ensemble,
                    max_path_length=max_path_length_this_loop,
                )
            else:
                if self.inference_type > 0: # UCB
                    path = ensemble_ucb_rollout(
                        self._env,
                        self._policy,
                        critic1=self.critic1,
                        critic2=self.critic2,
                        inference_type=self.inference_type,
                        feedback_type=self.feedback_type,
                        num_ensemble=self.num_ensemble,
                        noise_flag=self._noise_flag,
                        max_path_length=max_path_length_this_loop,
                        ber_mean=self.ber_mean,
                    )
                else:
                    path = ensemble_rollout(
                        self._env,
                        self._policy,
                        self.num_ensemble,
                        noise_flag=self._noise_flag,
                        max_path_length=max_path_length_this_loop,
                        ber_mean=self.ber_mean,
                    )
            path_len = len(path['actions'])
            if (
                    path_len != max_path_length
                    and not path['terminals'][-1]
                    and discard_incomplete_paths
            ):
                break
            num_steps_collected += path_len
            paths.append(path)
        self._num_paths_total += len(paths)
        self._num_steps_total += num_steps_collected
        self._epoch_paths.extend(paths)
        return paths

    def get_epoch_paths(self):
        return self._epoch_paths

    def end_epoch(self, epoch):
        self._epoch_paths = deque(maxlen=self._max_num_epoch_paths_saved)

    def get_diagnostics(self):
        path_lens = [len(path['actions']) for path in self._epoch_paths]
        stats = OrderedDict([
            ('num steps total', self._num_steps_total),
            ('num paths total', self._num_paths_total),
        ])
        stats.update(create_stats_ordered_dict(
            "path length",
            path_lens,
            always_show_all_stats=True,
        ))
        return stats

    def get_snapshot(self):
        return dict(
            env=self._env,
            policy=self._policy,
        )


class AsyncEnsembleMdpPathCollector(PathCollector):
    def __init__(
            self,
            env,
            policy,
            num_ensemble,
            noise_flag=0,
            ber_mean=0.5,
            eval_flag=False,
            max_num_epoch_paths_saved=None,
            render=False,
            render_kwargs=None,
            critic1=None,
            critic2=None,
            inference_type=0.0,
            feedback_type=1,
    ):
        if render_kwargs is None:
            render_kwargs = {}
        self._env = env
        self._policy = policy
        self._max_num_epoch_paths_saved = max_num_epoch_paths_saved
        self._epoch_paths = deque(maxlen=self._max_num_epoch_paths_saved)
        self._render = render
        self._render_kwargs = render_kwargs
        self.num_ensemble = num_ensemble
        self.eval_flag = eval_flag
        self.ber_mean = ber_mean
        self.critic1 = critic1
        self.critic2 = critic2
        self.inference_type = inference_type
        self.feedback_type = feedback_type
        self._noise_flag = noise_flag

        self._num_steps_total = 0
        self._num_paths_total = 0

    def collect_new_paths(
            self,
            max_path_length,
            num_steps,
            discard_incomplete_paths,
    ):
        paths = []
        num_steps_collected = 0
        while num_steps_collected < num_steps:
            max_path_length_this_loop = min(  # Do not go over num_steps
                max_path_length,
                num_steps - num_steps_collected,
            )
            if self.eval_flag:
                path = ensemble_eval_rollout(
                    self._env,
                    self._policy,
                    self.num_ensemble,
                    max_path_length=max_path_length_this_loop,
                )
            else:
                if self.inference_type > 0: # UCB
                    path = ensemble_ucb_rollout(
                        self._env,
                        self._policy,
                        critic1=self.critic1,
                        critic2=self.critic2,
                        inference_type=self.inference_type,
                        feedback_type=self.feedback_type,
                        num_ensemble=self.num_ensemble,
                        noise_flag=self._noise_flag,
                        max_path_length=max_path_length_this_loop,
                        ber_mean=self.ber_mean,
                    )
                else:
                    path = ensemble_rollout(
                        self._env,
                        self._policy,
                        self.num_ensemble,
                        noise_flag=self._noise_flag,
                        max_path_length=max_path_length_this_loop,
                        ber_mean=self.ber_mean,
                    )
            path_len = len(path['actions'])
            if (
                    path_len != max_path_length
                    and not path['terminals'][-1]
                    and discard_incomplete_paths
            ):
                break
            num_steps_collected += path_len
            paths.append(path)
        self._num_paths_total += len(paths)
        self._num_steps_total += num_steps_collected
        self._epoch_paths.extend(paths)
        return paths