File size: 1,241 Bytes
eaf2e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import random
from rlkit.exploration_strategies.base import RawExplorationStrategy
import numpy as np


class GaussianAndEpislonStrategy(RawExplorationStrategy):
    """
    With probability epsilon, take a completely random action.
    with probability 1-epsilon, add Gaussian noise to the action taken by a
    deterministic policy.
    """
    def __init__(self, action_space, epsilon, max_sigma=1.0, min_sigma=None,
                 decay_period=1000000):
        assert len(action_space.shape) == 1
        if min_sigma is None:
            min_sigma = max_sigma
        self._max_sigma = max_sigma
        self._epsilon = epsilon
        self._min_sigma = min_sigma
        self._decay_period = decay_period
        self._action_space = action_space

    def get_action_from_raw_action(self, action, t=None, **kwargs):
        if random.random() < self._epsilon:
            return self._action_space.sample()
        else:
            sigma = self._max_sigma - (self._max_sigma - self._min_sigma) * min(1.0, t * 1.0 / self._decay_period)
            return np.clip(
                action + np.random.normal(size=len(action)) * sigma,
                self._action_space.low,
                self._action_space.high,
                )