File size: 6,830 Bytes
8be1cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import json
import os
import csv
import numpy as np
from itertools import product
from src.smb.level import save_batch
from src.utils.filesys import getpath

############### Loggers for async environment ###############
class AsyncCsvLogger:
    def __init__(self, target, rfunc, buffer_size=50):
        self.rterms = tuple(term.get_name() for term in rfunc.terms)
        self.cols = ('steps', *self.rterms, 'reward_sum', 'time', 'trans', 'updates', '')
        self.buffer = []
        self.buffer_size = buffer_size
        self.ftarget = open(getpath(target), 'w', newline='')
        self.writer = csv.writer(self.ftarget)
        self.writer.writerow(self.cols)

    def on_episode(self, **kwargs):
        for rews in kwargs['rewss']:
            rews_list = [sum(rews[key]) for key in self.rterms]
            self.buffer.append([
                kwargs['steps'], *rews_list, sum(rews_list),
                kwargs['time'], kwargs['trans'], kwargs['updates']
            ])
        self.__try_write()
        if kwargs['close']:
            self.close()

    def __try_write(self):
        if len(self.buffer) < self.buffer_size:
            return
        self.writer.writerows(self.buffer)
        self.ftarget.flush()
        self.buffer.clear()

    def close(self):
        self.writer.writerows(self.buffer)
        self.ftarget.close()
        pass


class AsyncStdLogger:
    def __init__(self, rfunc, itv=2000, path=''):
        self.rterms = tuple(term.get_name() for term in rfunc.terms)
        self.rews = {rterm: 0. for rterm in self.rterms}
        self.n = 0
        self.itv = itv
        self.horizon = itv
        if not len(path):
            self.f = None
        else:
            self.f = open(getpath(path), 'w')
        self.last_steps = 0
        self.last_trans = 0
        self.last_updates = 0
        self.buffer = []
        pass

    def on_episode(self, **kwargs):
        newrews = {k: self.rews[k] for k in self.rterms}
        for rews, k in product(kwargs['rewss'], self.rterms):
            newrews[k] = newrews[k] + sum(rews[k])
        self.rews = newrews
        self.n += len(kwargs['rewss'])
        if kwargs['steps'] >= self.horizon or kwargs['close']:
            self.__output(**kwargs)
            self.horizon += self.itv
            self.rews = {k: 0 for k in self.rews.keys()}
            self.n = 0
            self.last_steps = kwargs['steps']
            self.last_trans = kwargs['trans']
            self.last_updates = kwargs['updates']
        if kwargs['close'] and self.f is not None:
            self.f.close()

    def __output(self, **kwargs):
        steps = kwargs['steps']
        if kwargs['close']:
            head = '-' * 20 + 'Closing rollouts' + '-' * 20
        else:
            head = '-' * 20 + f'Rollout of {self.last_steps}-{steps} steps' + '-' * 20
        self.buffer.append(head)
        rsum = 0
        for t in self.rterms:
            v = 0 if self.n == 0 else self.rews[t] / self.n
            rsum += v
            self.buffer.append(f'{t}: {v:.2f}')
        self.buffer.append(f'Reward sum: {rsum: .2f}')
        self.buffer.append('Time elapsed: %.1fs' % kwargs['time'])
        self.buffer.append('Transitions collected: %d (%d in total)' % (kwargs['trans'] - self.last_trans, kwargs['trans']))
        self.buffer.append('Number of updates: %d (%d in total)' % (kwargs['updates']- self.last_updates, kwargs['updates']))
        if self.f is None:
            print('\n'.join(self.buffer) + '\n')
        else:
            self.f.write('\n'.join(self.buffer) + '\n')
            self.f.flush()
        self.buffer.clear()
        pass

    def __reset(self):
        pass


class GenResLogger:
    def __init__(self, root_path, k, itv=5000):
        self.k = k
        self.itv = itv
        self.horizon = 0
        self.path = getpath(f'{root_path}/gen_log')
        os.makedirs(self.path, exist_ok=True)

    def on_episode(self, env, agent, steps):
        if steps >= self.horizon:
            lvls, vectraj = env.generate_levels(agent, self.k)
            # np.save(f'{self.path}/step{steps}', vectraj)
            if len(lvls):
                save_batch(lvls, f'{self.path}/step{steps}')
            self.horizon += self.itv
        pass
    pass


############### Loggers for sync environment, from https://github.com/SUSTechGameAI/MFEDRL ###############
class InfoCollector:
    ignored_keys = {'episode', 'terminal_observation'}
    save_itv = 1000

    def __init__(self, path, log_itv=100, log_targets=None):
        self.data = []
        self.path = path
        self.msg_itv = log_itv
        self.time_before_save = InfoCollector.save_itv
        self.msg_ptr = 0
        self.log_targets = [] if log_targets is None else log_targets
        if 'file' in log_targets:
            with open(f'{self.path}/log.txt', 'w') as f:
                f.write('')
        self.recent_time = 0

    def on_step(self, dones, infos):
        for done, info in zip(dones, infos):
            if done:
                self.data.append({
                    key: val for key, val in info.items()
                    if key not in InfoCollector.ignored_keys and 'reward_list' not in key
                })
                self.time_before_save -= 1
        if self.time_before_save <= 0:
            with open(f'{self.path}/ep_infos.json', 'w') as f:
                json.dump(self.data, f)
            self.time_before_save += InfoCollector.save_itv

        if self.log_targets and 0 < self.msg_itv <= (len(self.data) - self.msg_ptr):
            keys = set(self.data[-1].keys()) - {'TotalSteps', 'TimePassed', 'TotalScore', 'EpLen'}

            msg = '%sTotal steps: %d%s\n' % ('-' * 16, self.data[-1]['TotalSteps'], '-' * 16)
            msg += 'Time passed: %ds\n' % self.data[-1]['TimePassed']
            t = self.data[-1]['TimePassed'] - self.recent_time
            self.recent_time = self.data[-1]['TimePassed']
            f = sum(item['EpLength'] for item in self.data[self.msg_ptr:])
            msg += 'fps: %.3g\n' % (f/t)
            for key in keys:
                values = [item[key] for item in self.data[self.msg_ptr:]]
                values = np.array(values)
                msg += '%s: %.2f +- %.2f\n' % (key, values.mean(), values.std())
            values = [item['TotalScore'] for item in self.data[self.msg_ptr:]]
            values = np.array(values)
            msg += 'TotalScore: %.2f +- %.2f\n' % (values.mean(), values.std())

            if 'file' in self.log_targets:
                with open(f'{self.path}/log.txt', 'a') as f:
                    f.write(msg + '\n')
            if 'std' in self.log_targets:
                print(msg)
            self.msg_ptr = len(self.data)
            pass

    def close(self):
        with open(self.path, 'w') as f:
            json.dump(self.data, f)