File size: 15,480 Bytes
8be1cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3582c8a
8be1cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3582c8a
8be1cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import random
import time

import gym
import numpy as np
from typing import Tuple, List, Dict, Callable, Optional

from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.vec_env import SubprocVecEnv
from stable_baselines3.common.vec_env.base_vec_env import VecEnvStepReturn, VecEnvObs
from stable_baselines3.common.vec_env.subproc_vec_env import _flatten_obs

from src.env.logger import InfoCollector
from src.env.rfunc import RewardFunc
from src.smb.asyncsimlt import AsycSimltPool
from src.smb.level import lvlhcat
from src.gan.gans import SAGenerator
from src.gan.gankits import *
from src.smb.proxy import MarioProxy, MarioJavaAgents
from src.utils.datastruct import RingQueue


def get_padded_obs(vecs, histlen, add_batch_dim=False):
    if len(vecs) < histlen:
        lack = histlen - len(vecs)
        pad = [np.zeros([nz], np.float32) for _ in range(lack)]
        obs = np.concatenate(pad + vecs)
    else:
        obs = np.concatenate(vecs)
    if add_batch_dim:
        obs = np.reshape(obs, [1, -1])
    return obs


class SingleProcessOLGenEnv(gym.Env):
    def __init__(self, rfunc, decoder: SAGenerator, eplen: int=50, device='cuda:0'):
        self.rfunc = rfunc
        self.initvec_set = np.load(getpath('smb/init_latvecs.npy'))
        self.decoder = decoder
        self.decoder.to(device)
        self.hist_len = self.rfunc.get_n()
        self.eplen = eplen
        self.device = device
        self.action_space = gym.spaces.Box(-1, 1, (nz,))
        self.observation_space = gym.spaces.Box(-1, 1, (self.hist_len * nz,))

        self.lat_vecs = []
        self.simulator = MarioProxy()
        pass

    def step(self, action):
        self.lat_vecs.append(action)
        done = len(self.lat_vecs) == (self.eplen + 1)
        info = {}
        if done:
            rewss = self.__evalute()
            info['rewss'] = rewss
            rewsums = [sum(items) for items in zip(*rewss.values())]
            info['transitions'] = self.__process_traj(rewsums[-self.eplen:])
            self.reset()
        return self.getobs(), 0, done, info

    def __evalute(self):
        z = torch.tensor(np.stack(self.lat_vecs).reshape([-1, nz, 1, 1]), device=self.device, dtype=torch.float)
        segs = process_onehot(self.decoder(z))
        lvl = lvlhcat(segs)
        simlt_res = MarioProxy.get_seg_infos(self.simulator.simulate_complete(lvl))
        rewardss = self.rfunc.get_rewards(segs=segs, simlt_res=simlt_res)
        return rewardss

    def __process_traj(self, rewards):
        obs = []
        for i in range(1, len(self.lat_vecs) + 1):
            ob = get_padded_obs(self.lat_vecs[max(0, i - self.hist_len): i], self.hist_len)
            obs.append(ob)
        traj = [(obs[i], self.lat_vecs[i+1], rewards[i], obs[i+1]) for i in range(len(self.lat_vecs) - 1)]
        return traj

    def reset(self):
        self.lat_vecs.clear()
        z0 = self.initvec_set[random.randrange(0, len(self.initvec_set))]
        self.lat_vecs.append(z0)
        return self.getobs()

    def getobs(self):
        s = max(0, len(self.lat_vecs) - self.hist_len)
        return get_padded_obs(self.lat_vecs[s:], self.hist_len, True)

    def render(self, mode="human"):
        pass

    def generate_levels(self, agent, n=1, max_parallel=None):
        if max_parallel is None:
            max_parallel = min(n, 512)
        levels = []
        latvecs = []
        obs_queues = [RingQueue(self.hist_len) for _ in range(max_parallel)]
        while len(levels) < n:
            veclists = [[] for _ in range(min(max_parallel, n - len(levels)))]
            for queue, veclist in zip(obs_queues, veclists):
                queue.clear()
                init_latvec = self.initvec_set[random.randrange(0, len(self.initvec_set))]
                queue.push(init_latvec)
                veclist.append(init_latvec)
            for _ in range(self.eplen):
                obs = np.stack([get_padded_obs(queue.to_list(), self.hist_len) for queue in obs_queues])
                actions = agent.make_decision(obs)
                for queue, veclist, action in zip(obs_queues, veclists, actions):
                    queue.push(action)
                    veclist.append(action)
            for veclist in veclists:
                latvecs.append(np.stack(veclist))
                z = torch.tensor(latvecs[-1], device=self.device).view(-1, nz, 1, 1)
                lvl = lvlhcat(process_onehot(self.decoder(z)))
                levels.append(lvl)
        return levels, latvecs


class AsyncOlGenEnv:
    def __init__(self, histlen, decoder: SAGenerator, eval_pool: AsycSimltPool, eplen: int=50, device='cuda:0'):
        self.initvec_set = np.load(getpath('smb/init_latvecs.npy'))
        self.decoder = decoder
        self.decoder.to(device)
        self.device = device
        # mario simulator 在eval_pool里面
        self.eval_pool = eval_pool
        self.eplen = eplen
        self.tid = 0
        self.histlen = histlen

        self.cur_vectraj = []
        self.buffer = {}

    def reset(self):
        if len(self.cur_vectraj) > 0:
            self.buffer[self.tid] = self.cur_vectraj
            self.cur_vectraj = []
            self.tid += 1
        z0 = self.initvec_set[random.randrange(0, len(self.initvec_set))]
        self.cur_vectraj.append(z0)
        return self.getobs()

    def step(self, action):
        self.cur_vectraj.append(action)
        done = len(self.cur_vectraj) == (self.eplen + 1)
        if done:
            self.__submit_eval_task()
            self.reset()
        return self.getobs(), done

    def getobs(self):
        s = max(0, len(self.cur_vectraj) - self.histlen)
        return get_padded_obs(self.cur_vectraj[s:], self.histlen, True)

    def __submit_eval_task(self):
        z = torch.tensor(np.stack(self.cur_vectraj).reshape([-1, nz, 1, 1]), device=self.device)
        segs = process_onehot(self.decoder(torch.clamp(z, -1, 1)))
        lvl = lvlhcat(segs)
        args = (self.tid, str(lvl))
        self.eval_pool.put('evaluate', args)

    def refresh(self):
        if self.eval_pool is not None:
            self.eval_pool.refresh()

    def rollout(self, close=False, wait=False) -> Tuple[List[Tuple], List[Dict[str, List]]]:
        transitions, rewss = [], []
        if close:
            eval_res = self.eval_pool.close()
        else:
            eval_res = self.eval_pool.get(wait)
        for tid, rewards in eval_res:
            rewss.append(rewards)
            rewsums = [sum(items) for items in zip(*rewards.values())]
            vectraj = self.buffer.pop(tid)
            transitions += self.__process_traj(vectraj, rewsums[-self.eplen:])
        return transitions, rewss

    def __process_traj(self, vectraj, rewards):
        obs = []
        for i in range(1, len(vectraj) + 1):
            ob = get_padded_obs(vectraj[max(0, i - self.histlen): i], self.histlen)
            obs.append(ob)
        traj = [(obs[i], vectraj[i+1], rewards[i], obs[i+1]) for i in range(len(vectraj) - 1)]
        return traj

    def close(self):
        res = self.rollout(True)
        self.eval_pool = None
        return res

    def generate_levels(self, agent, n=1, max_parallel=None):
        if max_parallel is None:
            max_parallel = min(n, 512)
        levels = []
        latvecs = []
        obs_queues = [RingQueue(self.histlen) for _ in range(max_parallel)]
        while len(levels) < n:
            veclists = [[] for _ in range(min(max_parallel, n - len(levels)))]
            for queue, veclist in zip(obs_queues, veclists):
                queue.clear()
                init_latvec = self.initvec_set[random.randrange(0, len(self.initvec_set))]
                queue.push(init_latvec)
                veclist.append(init_latvec)
            for _ in range(self.eplen):
                obs = np.stack([get_padded_obs(queue.to_list(), self.histlen) for queue in obs_queues])
                actions = agent.make_decision(obs)
                for queue, veclist, action in zip(obs_queues, veclists, actions):
                    queue.push(action)
                    veclist.append(action)
            for veclist in veclists:
                latvecs.append(np.stack(veclist))
                z = torch.tensor(latvecs[-1], device=self.device).view(-1, nz, 1, 1)
                lvl = lvlhcat(process_onehot(self.decoder(z)))
                levels.append(lvl)
        return levels, latvecs


######### Adopt from https://github.com/SUSTechGameAI/MFEDRL #########
class SyncOLGenWorkerEnv(gym.Env):
    def __init__(self, rfunc=None, hist_len=5, eplen=25, return_lvl=False, init_one=False, play_style='Runner'):
        self.rfunc = RewardFunc() if rfunc is None else rfunc
        self.mario_proxy = MarioProxy() if self.rfunc.require_simlt else None
        self.action_space = gym.spaces.Box(-1, 1, (nz,))
        self.hist_len = hist_len
        self.observation_space = gym.spaces.Box(-1, 1, (hist_len * nz,))
        self.segs = []
        self.latvec_archive = RingQueue(hist_len)
        self.eplen = eplen
        self.counter = 0
        # self.repairer = DivideConquerRepairer()
        self.init_one = init_one
        self.backup_latvecs = None
        self.backup_strsegs = None
        self.return_lvl = return_lvl
        self.jagent = MarioJavaAgents.__getitem__(play_style)
        self.simlt_k = 80 if play_style == 'Runner' else 320

    def receive(self, **kwargs):
        for key in kwargs.keys():
            setattr(self, key, kwargs[key])

    def step(self, data):
        action, strseg = data
        seg = MarioLevel(strseg)
        self.latvec_archive.push(action)

        self.counter += 1
        self.segs.append(seg)
        done = self.counter >= self.eplen
        if done:
            full_level = lvlhcat(self.segs)
            w = MarioLevel.seg_width
            segs = [full_level[:, s: s + w] for s in range(0, full_level.w, w)]
            if self.mario_proxy:
                raw_simlt_res = self.mario_proxy.simulate_complete(lvlhcat(segs), self.jagent, self.simlt_k)
                simlt_res = MarioProxy.get_seg_infos(raw_simlt_res)
            else:
                simlt_res = None
            rewards = self.rfunc.get_rewards(segs=segs, simlt_res=simlt_res)
            info = {}
            total_score = 0
            if self.return_lvl:
                info['LevelStr'] = str(full_level)
            for key in rewards:
                info[f'{key}_reward_list'] = rewards[key][-self.eplen:]
                info[f'{key}'] = sum(rewards[key][-self.eplen:])
                total_score += info[f'{key}']
            info['TotalScore'] = total_score
            info['EpLength'] = self.counter
        else:
            info = {}
        return self.__get_obs(), 0, done, info

    def reset(self):
        self.segs.clear()
        self.latvec_archive.clear()
        for latvec, strseg in zip(self.backup_latvecs, self.backup_strsegs):
            self.latvec_archive.push(latvec)
            self.segs.append(MarioLevel(strseg))

        self.backup_latvecs, self.backup_strsegs = None, None
        self.counter = 0
        return self.__get_obs()

    def __get_obs(self):
        lack = self.hist_len - len(self.latvec_archive)
        pad = [np.zeros([nz], np.float32) for _ in range(lack)]
        return np.concatenate([*pad, *self.latvec_archive.to_list()])

    def render(self, mode='human'):
        pass


class VecOLGenEnv(SubprocVecEnv):
    def __init__(
        self, env_fns: List[Callable[[], gym.Env]], start_method: Optional[str] = None, hist_len=5, eplen=50,
        init_one=True, log_path=None, log_itv=-1, log_targets=None, device='cuda:0'
    ):
        super(VecOLGenEnv, self).__init__(env_fns, start_method)
        self.decoder = get_decoder(device=device)

        if log_path:
            self.logger = InfoCollector(log_path, log_itv, log_targets)
        else:
            self.logger = None
        self.hist_len = hist_len
        self.total_steps = 0
        self.start_time = time.time()
        self.eplen = eplen
        self.device = device
        self.init_one = init_one
        self.latvec_set = np.load(getpath('smb/init_latvecs.npy'))

    def step_async(self, actions: np.ndarray) -> None:
        with torch.no_grad():
            z = torch.tensor(actions.astype(np.float32), device=self.device).view(-1, nz, 1, 1)
            segs = process_onehot(self.decoder(z))
        for remote, action, seg in zip(self.remotes, actions, segs):
            remote.send(("step", (action, str(seg))))
        self.waiting = True

    def step_wait(self) -> VecEnvStepReturn:
        self.total_steps += self.num_envs
        results = [remote.recv() for remote in self.remotes]
        self.waiting = False
        obs, rews, dones, infos = zip(*results)

        envs_to_send = [i for i in range(self.num_envs) if dones[i]]
        self.send_reset_data(envs_to_send)

        if self.logger is not None:
            for i in range(self.num_envs):
                if infos[i]:
                    infos[i]['TotalSteps'] = self.total_steps
                    infos[i]['TimePassed'] = time.time() - self.start_time
            self.logger.on_step(dones, infos)
        return _flatten_obs(obs, self.observation_space), np.stack(rews), np.stack(dones), infos

    def reset(self) -> VecEnvObs:
        self.send_reset_data()
        for remote in self.remotes:
            remote.send(("reset", None))
        obs = [remote.recv() for remote in self.remotes]
        self.send_reset_data()
        return _flatten_obs(obs, self.observation_space)

    def send_reset_data(self, env_ids=None):
        if env_ids is None:
            env_ids = [*range(self.num_envs)]
        target_remotes = self._get_target_remotes(env_ids)

        n_inits = 1 if self.init_one else self.hist_len

        latvecs = [self.latvec_set[random.sample(range(len(self.latvec_set)), n_inits)] for _ in range(len(env_ids))]
        with torch.no_grad():
            segss = [[] for _ in range(len(env_ids))]
            for i in range(len(env_ids)):
                z = torch.tensor(latvecs[i]).view(-1, nz, 1, 1).to(self.device)
                segss[i] = [process_onehot(self.decoder(z))] if self.init_one else process_onehot(self.decoder(z))
        for remote, latvec, segs in zip(target_remotes, latvecs, segss):
            kwargs = {'backup_latvecs': latvec, 'backup_strsegs': [str(seg) for seg in segs]}
            remote.send(("env_method", ('receive', [], kwargs)))
        for remote in target_remotes:
            remote.recv()

    def close(self) -> None:
        super().close()
        if self.logger is not None:
            self.logger.close()


def make_vec_offrew_env(
        num_envs, rfunc=None, log_path=None, eplen=25, log_itv=-1, hist_len=5, init_one=True,
        play_style='Runner', device='cuda:0', log_targets=None, return_lvl=False
    ):
    return make_vec_env(
        SyncOLGenWorkerEnv, n_envs=num_envs, vec_env_cls=VecOLGenEnv,
        vec_env_kwargs={
            'log_path': log_path,
            'log_itv': log_itv,
            'log_targets': log_targets,
            'device': device,
            'eplen': eplen,
            'hist_len': hist_len,
            'init_one': init_one
        },
        env_kwargs={
            'rfunc': rfunc,
            'eplen': eplen,
            'return_lvl': return_lvl,
            'play_style': play_style,
            'hist_len': hist_len,
            'init_one': init_one
        }
    )