Spaces:
Runtime error
Runtime error
File size: 24,392 Bytes
4d1ebf3 53a8438 4d1ebf3 53a8438 4d1ebf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
"""
This code is based on:
[1] FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting, ICCV 2021
https://github.com/ruiliu-ai/FuseFormer
[2] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021
https://github.com/yitu-opensource/T2T-ViT
[3] Focal Self-attention for Local-Global Interactions in Vision Transformers, NeurIPS 2021
https://github.com/microsoft/Focal-Transformer
"""
import math
from functools import reduce
import torch
import torch.nn as nn
import torch.nn.functional as F
class SoftSplit(nn.Module):
def __init__(self, channel, hidden, kernel_size, stride, padding,
t2t_param):
super(SoftSplit, self).__init__()
self.kernel_size = kernel_size
self.t2t = nn.Unfold(kernel_size=kernel_size,
stride=stride,
padding=padding)
c_in = reduce((lambda x, y: x * y), kernel_size) * channel
self.embedding = nn.Linear(c_in, hidden)
self.t2t_param = t2t_param
def forward(self, x, b, output_size):
f_h = int((output_size[0] + 2 * self.t2t_param['padding'][0] -
(self.t2t_param['kernel_size'][0] - 1) - 1) /
self.t2t_param['stride'][0] + 1)
f_w = int((output_size[1] + 2 * self.t2t_param['padding'][1] -
(self.t2t_param['kernel_size'][1] - 1) - 1) /
self.t2t_param['stride'][1] + 1)
feat = self.t2t(x)
feat = feat.permute(0, 2, 1)
# feat shape [b*t, num_vec, ks*ks*c]
feat = self.embedding(feat)
# feat shape after embedding [b, t*num_vec, hidden]
feat = feat.view(b, -1, f_h, f_w, feat.size(2))
return feat
class SoftComp(nn.Module):
def __init__(self, channel, hidden, kernel_size, stride, padding):
super(SoftComp, self).__init__()
self.relu = nn.LeakyReLU(0.2, inplace=True)
c_out = reduce((lambda x, y: x * y), kernel_size) * channel
self.embedding = nn.Linear(hidden, c_out)
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.bias_conv = nn.Conv2d(channel,
channel,
kernel_size=3,
stride=1,
padding=1)
# TODO upsample conv
# self.bias_conv = nn.Conv2d()
# self.bias = nn.Parameter(torch.zeros((channel, h, w), dtype=torch.float32), requires_grad=True)
def forward(self, x, t, output_size):
b_, _, _, _, c_ = x.shape
x = x.view(b_, -1, c_)
feat = self.embedding(x)
b, _, c = feat.size()
feat = feat.view(b * t, -1, c).permute(0, 2, 1)
feat = F.fold(feat,
output_size=output_size,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding)
feat = self.bias_conv(feat)
return feat
class FusionFeedForward(nn.Module):
def __init__(self, d_model, n_vecs=None, t2t_params=None):
super(FusionFeedForward, self).__init__()
# We set d_ff as a default to 1960
hd = 1960
self.conv1 = nn.Sequential(nn.Linear(d_model, hd))
self.conv2 = nn.Sequential(nn.GELU(), nn.Linear(hd, d_model))
assert t2t_params is not None and n_vecs is not None
self.t2t_params = t2t_params
def forward(self, x, output_size):
n_vecs = 1
for i, d in enumerate(self.t2t_params['kernel_size']):
n_vecs *= int((output_size[i] + 2 * self.t2t_params['padding'][i] -
(d - 1) - 1) / self.t2t_params['stride'][i] + 1)
x = self.conv1(x)
b, n, c = x.size()
normalizer = x.new_ones(b, n, 49).view(-1, n_vecs, 49).permute(0, 2, 1)
normalizer = F.fold(normalizer,
output_size=output_size,
kernel_size=self.t2t_params['kernel_size'],
padding=self.t2t_params['padding'],
stride=self.t2t_params['stride'])
x = F.fold(x.view(-1, n_vecs, c).permute(0, 2, 1),
output_size=output_size,
kernel_size=self.t2t_params['kernel_size'],
padding=self.t2t_params['padding'],
stride=self.t2t_params['stride'])
x = F.unfold(x / normalizer,
kernel_size=self.t2t_params['kernel_size'],
padding=self.t2t_params['padding'],
stride=self.t2t_params['stride']).permute(
0, 2, 1).contiguous().view(b, n, c)
x = self.conv2(x)
return x
def window_partition(x, window_size):
"""
Args:
x: shape is (B, T, H, W, C)
window_size (tuple[int]): window size
Returns:
windows: (B*num_windows, T*window_size*window_size, C)
"""
B, T, H, W, C = x.shape
x = x.view(B, T, H // window_size[0], window_size[0], W // window_size[1],
window_size[1], C)
windows = x.permute(0, 2, 4, 1, 3, 5, 6).contiguous().view(
-1, T * window_size[0] * window_size[1], C)
return windows
def window_partition_noreshape(x, window_size):
"""
Args:
x: shape is (B, T, H, W, C)
window_size (tuple[int]): window size
Returns:
windows: (B, num_windows_h, num_windows_w, T, window_size, window_size, C)
"""
B, T, H, W, C = x.shape
x = x.view(B, T, H // window_size[0], window_size[0], W // window_size[1],
window_size[1], C)
windows = x.permute(0, 2, 4, 1, 3, 5, 6).contiguous()
return windows
def window_reverse(windows, window_size, T, H, W):
"""
Args:
windows: shape is (num_windows*B, T, window_size, window_size, C)
window_size (tuple[int]): Window size
T (int): Temporal length of video
H (int): Height of image
W (int): Width of image
Returns:
x: (B, T, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size[0] / window_size[1]))
x = windows.view(B, H // window_size[0], W // window_size[1], T,
window_size[0], window_size[1], -1)
x = x.permute(0, 3, 1, 4, 2, 5, 6).contiguous().view(B, T, H, W, -1)
return x
class WindowAttention(nn.Module):
"""Temporal focal window attention
"""
def __init__(self, dim, expand_size, window_size, focal_window,
focal_level, num_heads, qkv_bias, pool_method):
super().__init__()
self.dim = dim
self.expand_size = expand_size
self.window_size = window_size # Wh, Ww
self.pool_method = pool_method
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.focal_level = focal_level
self.focal_window = focal_window
if any(i > 0 for i in self.expand_size) and focal_level > 0:
# get mask for rolled k and rolled v
mask_tl = torch.ones(self.window_size[0], self.window_size[1])
mask_tl[:-self.expand_size[0], :-self.expand_size[1]] = 0
mask_tr = torch.ones(self.window_size[0], self.window_size[1])
mask_tr[:-self.expand_size[0], self.expand_size[1]:] = 0
mask_bl = torch.ones(self.window_size[0], self.window_size[1])
mask_bl[self.expand_size[0]:, :-self.expand_size[1]] = 0
mask_br = torch.ones(self.window_size[0], self.window_size[1])
mask_br[self.expand_size[0]:, self.expand_size[1]:] = 0
mask_rolled = torch.stack((mask_tl, mask_tr, mask_bl, mask_br),
0).flatten(0)
self.register_buffer("valid_ind_rolled",
mask_rolled.nonzero(as_tuple=False).view(-1))
if pool_method != "none" and focal_level > 1:
self.unfolds = nn.ModuleList()
# build relative position bias between local patch and pooled windows
for k in range(focal_level - 1):
stride = 2**k
kernel_size = tuple(2 * (i // 2) + 2**k + (2**k - 1)
for i in self.focal_window)
# define unfolding operations
self.unfolds += [
nn.Unfold(kernel_size=kernel_size,
stride=stride,
padding=tuple(i // 2 for i in kernel_size))
]
# define unfolding index for focal_level > 0
if k > 0:
mask = torch.zeros(kernel_size)
mask[(2**k) - 1:, (2**k) - 1:] = 1
self.register_buffer(
"valid_ind_unfold_{}".format(k),
mask.flatten(0).nonzero(as_tuple=False).view(-1))
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x_all, mask_all=None):
"""
Args:
x: input features with shape of (B, T, Wh, Ww, C)
mask: (0/-inf) mask with shape of (num_windows, T*Wh*Ww, T*Wh*Ww) or None
output: (nW*B, Wh*Ww, C)
"""
x = x_all[0]
B, T, nH, nW, C = x.shape
qkv = self.qkv(x).reshape(B, T, nH, nW, 3,
C).permute(4, 0, 1, 2, 3, 5).contiguous()
q, k, v = qkv[0], qkv[1], qkv[2] # B, T, nH, nW, C
# partition q map
(q_windows, k_windows, v_windows) = map(
lambda t: window_partition(t, self.window_size).view(
-1, T, self.window_size[0] * self.window_size[1], self.
num_heads, C // self.num_heads).permute(0, 3, 1, 2, 4).
contiguous().view(-1, self.num_heads, T * self.window_size[
0] * self.window_size[1], C // self.num_heads), (q, k, v))
# q(k/v)_windows shape : [16, 4, 225, 128]
if any(i > 0 for i in self.expand_size) and self.focal_level > 0:
(k_tl, v_tl) = map(
lambda t: torch.roll(t,
shifts=(-self.expand_size[0], -self.
expand_size[1]),
dims=(2, 3)), (k, v))
(k_tr, v_tr) = map(
lambda t: torch.roll(t,
shifts=(-self.expand_size[0], self.
expand_size[1]),
dims=(2, 3)), (k, v))
(k_bl, v_bl) = map(
lambda t: torch.roll(t,
shifts=(self.expand_size[0], -self.
expand_size[1]),
dims=(2, 3)), (k, v))
(k_br, v_br) = map(
lambda t: torch.roll(t,
shifts=(self.expand_size[0], self.
expand_size[1]),
dims=(2, 3)), (k, v))
(k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows) = map(
lambda t: window_partition(t, self.window_size).view(
-1, T, self.window_size[0] * self.window_size[1], self.
num_heads, C // self.num_heads), (k_tl, k_tr, k_bl, k_br))
(v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows) = map(
lambda t: window_partition(t, self.window_size).view(
-1, T, self.window_size[0] * self.window_size[1], self.
num_heads, C // self.num_heads), (v_tl, v_tr, v_bl, v_br))
k_rolled = torch.cat(
(k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows),
2).permute(0, 3, 1, 2, 4).contiguous()
v_rolled = torch.cat(
(v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows),
2).permute(0, 3, 1, 2, 4).contiguous()
# mask out tokens in current window
k_rolled = k_rolled[:, :, :, self.valid_ind_rolled]
v_rolled = v_rolled[:, :, :, self.valid_ind_rolled]
temp_N = k_rolled.shape[3]
k_rolled = k_rolled.view(-1, self.num_heads, T * temp_N,
C // self.num_heads)
v_rolled = v_rolled.view(-1, self.num_heads, T * temp_N,
C // self.num_heads)
k_rolled = torch.cat((k_windows, k_rolled), 2)
v_rolled = torch.cat((v_windows, v_rolled), 2)
else:
k_rolled = k_windows
v_rolled = v_windows
# q(k/v)_windows shape : [16, 4, 225, 128]
# k_rolled.shape : [16, 4, 5, 165, 128]
# ideal expanded window size 153 ((5+2*2)*(9+2*4))
# k_windows=45 expand_window=108 overlap_window=12 (since expand_size < window_size / 2)
if self.pool_method != "none" and self.focal_level > 1:
k_pooled = []
v_pooled = []
for k in range(self.focal_level - 1):
stride = 2**k
# B, T, nWh, nWw, C
x_window_pooled = x_all[k + 1].permute(0, 3, 1, 2,
4).contiguous()
nWh, nWw = x_window_pooled.shape[2:4]
# generate mask for pooled windows
mask = x_window_pooled.new(T, nWh, nWw).fill_(1)
# unfold mask: [nWh*nWw//s//s, k*k, 1]
unfolded_mask = self.unfolds[k](mask.unsqueeze(1)).view(
1, T, self.unfolds[k].kernel_size[0], self.unfolds[k].kernel_size[1], -1).permute(4, 1, 2, 3, 0).contiguous().\
view(nWh*nWw // stride // stride, -1, 1)
if k > 0:
valid_ind_unfold_k = getattr(
self, "valid_ind_unfold_{}".format(k))
unfolded_mask = unfolded_mask[:, valid_ind_unfold_k]
x_window_masks = unfolded_mask.flatten(1).unsqueeze(0)
x_window_masks = x_window_masks.masked_fill(
x_window_masks == 0,
float(-100.0)).masked_fill(x_window_masks > 0, float(0.0))
mask_all[k + 1] = x_window_masks
# generate k and v for pooled windows
qkv_pooled = self.qkv(x_window_pooled).reshape(
B, T, nWh, nWw, 3, C).permute(4, 0, 1, 5, 2,
3).view(3, -1, C, nWh,
nWw).contiguous()
# B*T, C, nWh, nWw
k_pooled_k, v_pooled_k = qkv_pooled[1], qkv_pooled[2]
# k_pooled_k shape: [5, 512, 4, 4]
# self.unfolds[k](k_pooled_k) shape: [5, 23040 (512 * 5 * 9 ), 16]
(k_pooled_k, v_pooled_k) = map(
lambda t: self.unfolds[k]
(t).view(B, T, C, self.unfolds[k].kernel_size[0], self.
unfolds[k].kernel_size[1], -1)
.permute(0, 5, 1, 3, 4, 2).contiguous().view(
-1, T, self.unfolds[k].kernel_size[0] * self.unfolds[
k].kernel_size[1], self.num_heads, C // self.
num_heads).permute(0, 3, 1, 2, 4).contiguous(),
# (B x (nH*nW)) x nHeads x T x (unfold_wsize x unfold_wsize) x head_dim
(k_pooled_k, v_pooled_k))
# k_pooled_k shape : [16, 4, 5, 45, 128]
# select valid unfolding index
if k > 0:
(k_pooled_k, v_pooled_k) = map(
lambda t: t[:, :, :, valid_ind_unfold_k],
(k_pooled_k, v_pooled_k))
k_pooled_k = k_pooled_k.view(
-1, self.num_heads, T * self.unfolds[k].kernel_size[0] *
self.unfolds[k].kernel_size[1], C // self.num_heads)
v_pooled_k = v_pooled_k.view(
-1, self.num_heads, T * self.unfolds[k].kernel_size[0] *
self.unfolds[k].kernel_size[1], C // self.num_heads)
k_pooled += [k_pooled_k]
v_pooled += [v_pooled_k]
# k_all (v_all) shape : [16, 4, 5 * 210, 128]
k_all = torch.cat([k_rolled] + k_pooled, 2)
v_all = torch.cat([v_rolled] + v_pooled, 2)
else:
k_all = k_rolled
v_all = v_rolled
N = k_all.shape[-2]
q_windows = q_windows * self.scale
# B*nW, nHead, T*window_size*window_size, T*focal_window_size*focal_window_size
attn = (q_windows @ k_all.transpose(-2, -1))
# T * 45
window_area = T * self.window_size[0] * self.window_size[1]
# T * 165
window_area_rolled = k_rolled.shape[2]
if self.pool_method != "none" and self.focal_level > 1:
offset = window_area_rolled
for k in range(self.focal_level - 1):
# add attentional mask
# mask_all[1] shape [1, 16, T * 45]
bias = tuple((i + 2**k - 1) for i in self.focal_window)
if mask_all[k + 1] is not None:
attn[:, :, :window_area, offset:(offset + (T*bias[0]*bias[1]))] = \
attn[:, :, :window_area, offset:(offset + (T*bias[0]*bias[1]))] + \
mask_all[k+1][:, :, None, None, :].repeat(
attn.shape[0] // mask_all[k+1].shape[1], 1, 1, 1, 1).view(-1, 1, 1, mask_all[k+1].shape[-1])
offset += T * bias[0] * bias[1]
if mask_all[0] is not None:
nW = mask_all[0].shape[0]
attn = attn.view(attn.shape[0] // nW, nW, self.num_heads,
window_area, N)
attn[:, :, :, :, :
window_area] = attn[:, :, :, :, :window_area] + mask_all[0][
None, :, None, :, :]
attn = attn.view(-1, self.num_heads, window_area, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
x = (attn @ v_all).transpose(1, 2).reshape(attn.shape[0], window_area,
C)
x = self.proj(x)
return x
class TemporalFocalTransformerBlock(nn.Module):
r""" Temporal Focal Transformer Block.
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (tuple[int]): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
focal_level (int): The number level of focal window.
focal_window (int): Window size of each focal window.
n_vecs (int): Required for F3N.
t2t_params (int): T2T parameters for F3N.
"""
def __init__(self,
dim,
num_heads,
window_size=(5, 9),
mlp_ratio=4.,
qkv_bias=True,
pool_method="fc",
focal_level=2,
focal_window=(5, 9),
norm_layer=nn.LayerNorm,
n_vecs=None,
t2t_params=None):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.expand_size = tuple(i // 2 for i in window_size) # TODO
self.mlp_ratio = mlp_ratio
self.pool_method = pool_method
self.focal_level = focal_level
self.focal_window = focal_window
self.window_size_glo = self.window_size
self.pool_layers = nn.ModuleList()
if self.pool_method != "none":
for k in range(self.focal_level - 1):
window_size_glo = tuple(
math.floor(i / (2**k)) for i in self.window_size_glo)
self.pool_layers.append(
nn.Linear(window_size_glo[0] * window_size_glo[1], 1))
self.pool_layers[-1].weight.data.fill_(
1. / (window_size_glo[0] * window_size_glo[1]))
self.pool_layers[-1].bias.data.fill_(0)
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(dim,
expand_size=self.expand_size,
window_size=self.window_size,
focal_window=focal_window,
focal_level=focal_level,
num_heads=num_heads,
qkv_bias=qkv_bias,
pool_method=pool_method)
self.norm2 = norm_layer(dim)
self.mlp = FusionFeedForward(dim, n_vecs=n_vecs, t2t_params=t2t_params)
def forward(self, x):
output_size = x[1]
x = x[0]
B, T, H, W, C = x.shape
shortcut = x
x = self.norm1(x)
shifted_x = x
x_windows_all = [shifted_x]
x_window_masks_all = [None]
# partition windows tuple(i // 2 for i in window_size)
if self.focal_level > 1 and self.pool_method != "none":
# if we add coarser granularity and the pool method is not none
for k in range(self.focal_level - 1):
window_size_glo = tuple(
math.floor(i / (2**k)) for i in self.window_size_glo)
pooled_h = math.ceil(H / window_size_glo[0]) * (2**k)
pooled_w = math.ceil(W / window_size_glo[1]) * (2**k)
H_pool = pooled_h * window_size_glo[0]
W_pool = pooled_w * window_size_glo[1]
x_level_k = shifted_x
# trim or pad shifted_x depending on the required size
if H > H_pool:
trim_t = (H - H_pool) // 2
trim_b = H - H_pool - trim_t
x_level_k = x_level_k[:, :, trim_t:-trim_b]
elif H < H_pool:
pad_t = (H_pool - H) // 2
pad_b = H_pool - H - pad_t
x_level_k = F.pad(x_level_k, (0, 0, 0, 0, pad_t, pad_b))
if W > W_pool:
trim_l = (W - W_pool) // 2
trim_r = W - W_pool - trim_l
x_level_k = x_level_k[:, :, :, trim_l:-trim_r]
elif W < W_pool:
pad_l = (W_pool - W) // 2
pad_r = W_pool - W - pad_l
x_level_k = F.pad(x_level_k, (0, 0, pad_l, pad_r))
x_windows_noreshape = window_partition_noreshape(
x_level_k.contiguous(), window_size_glo
) # B, nw, nw, T, window_size, window_size, C
nWh, nWw = x_windows_noreshape.shape[1:3]
x_windows_noreshape = x_windows_noreshape.view(
B, nWh, nWw, T, window_size_glo[0] * window_size_glo[1],
C).transpose(4, 5) # B, nWh, nWw, T, C, wsize**2
x_windows_pooled = self.pool_layers[k](
x_windows_noreshape).flatten(-2) # B, nWh, nWw, T, C
x_windows_all += [x_windows_pooled]
x_window_masks_all += [None]
# nW*B, T*window_size*window_size, C
attn_windows = self.attn(x_windows_all, mask_all=x_window_masks_all)
# merge windows
attn_windows = attn_windows.view(-1, T, self.window_size[0],
self.window_size[1], C)
shifted_x = window_reverse(attn_windows, self.window_size, T, H,
W) # B T H' W' C
# FFN
x = shortcut + shifted_x
y = self.norm2(x)
x = x + self.mlp(y.view(B, T * H * W, C), output_size).view(
B, T, H, W, C)
return x, output_size
|