Spaces:
Build error
Build error
File size: 5,270 Bytes
e882f51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import glob
import importlib
import os
import matplotlib
import numpy as np
import torch
import torch.distributions
import torch.optim
import torch.optim
import torch.utils.data
from preprocessing.process_pipeline import File2Batch
from utils.hparams import hparams
from utils.indexed_datasets import IndexedDataset
from utils.pitch_utils import norm_interp_f0
matplotlib.use('Agg')
class SvcDataset(torch.utils.data.Dataset):
def __init__(self, prefix, shuffle=False):
super().__init__()
self.hparams = hparams
self.shuffle = shuffle
self.sort_by_len = hparams['sort_by_len']
self.sizes = None
self.data_dir = hparams['binary_data_dir']
self.prefix = prefix
self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy')
self.indexed_ds = None
# self.name2spk_id={}
# pitch stats
f0_stats_fn = f'{self.data_dir}/train_f0s_mean_std.npy'
if os.path.exists(f0_stats_fn):
hparams['f0_mean'], hparams['f0_std'] = self.f0_mean, self.f0_std = np.load(f0_stats_fn)
hparams['f0_mean'] = float(hparams['f0_mean'])
hparams['f0_std'] = float(hparams['f0_std'])
else:
hparams['f0_mean'], hparams['f0_std'] = self.f0_mean, self.f0_std = None, None
if prefix == 'test':
if hparams['test_input_dir'] != '':
self.indexed_ds, self.sizes = self.load_test_inputs(hparams['test_input_dir'])
else:
if hparams['num_test_samples'] > 0:
self.avail_idxs = list(range(hparams['num_test_samples'])) + hparams['test_ids']
self.sizes = [self.sizes[i] for i in self.avail_idxs]
@property
def _sizes(self):
return self.sizes
def _get_item(self, index):
if hasattr(self, 'avail_idxs') and self.avail_idxs is not None:
index = self.avail_idxs[index]
if self.indexed_ds is None:
self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}')
return self.indexed_ds[index]
def __getitem__(self, index):
item = self._get_item(index)
max_frames = hparams['max_frames']
spec = torch.Tensor(item['mel'])[:max_frames]
# energy = (spec.exp() ** 2).sum(-1).sqrt()
mel2ph = torch.LongTensor(item['mel2ph'])[:max_frames] if 'mel2ph' in item else None
f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams)
hubert = torch.Tensor(item['hubert'][:hparams['max_input_tokens']])
pitch = torch.LongTensor(item.get("pitch"))[:max_frames]
sample = {
"id": index,
"item_name": item['item_name'],
"hubert": hubert,
"mel": spec,
"pitch": pitch,
"f0": f0,
"uv": uv,
"mel2ph": mel2ph,
"mel_nonpadding": spec.abs().sum(-1) > 0,
}
if hparams['use_energy_embed']:
sample['energy'] = item['energy']
if hparams['use_spk_embed']:
sample["spk_embed"] = torch.Tensor(item['spk_embed'])
if hparams['use_spk_id']:
sample["spk_id"] = item['spk_id']
return sample
@staticmethod
def collater(samples):
return File2Batch.processed_input2batch(samples)
@staticmethod
def load_test_inputs(test_input_dir):
inp_wav_paths = glob.glob(f'{test_input_dir}/*.wav') + glob.glob(f'{test_input_dir}/*.mp3')
sizes = []
items = []
binarizer_cls = hparams.get("binarizer_cls", 'basics.base_binarizer.BaseBinarizer')
pkg = ".".join(binarizer_cls.split(".")[:-1])
cls_name = binarizer_cls.split(".")[-1]
binarizer_cls = getattr(importlib.import_module(pkg), cls_name)
from preprocessing.hubertinfer import HubertEncoder
for wav_fn in inp_wav_paths:
item_name = os.path.basename(wav_fn)
wav_fn = wav_fn
encoder = HubertEncoder(hparams['hubert_path'])
item = binarizer_cls.process_item(item_name, {'wav_fn': wav_fn}, encoder)
print(item)
items.append(item)
sizes.append(item['len'])
return items, sizes
def __len__(self):
return len(self._sizes)
def num_tokens(self, index):
return self.size(index)
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
size = min(self._sizes[index], hparams['max_frames'])
return size
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.shuffle:
indices = np.random.permutation(len(self))
if self.sort_by_len:
indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')]
# 先random, 然后稳定排序, 保证排序后同长度的数据顺序是依照random permutation的 (被其随机打乱).
else:
indices = np.arange(len(self))
return indices
@property
def num_workers(self):
return int(os.getenv('NUM_WORKERS', hparams['ds_workers']))
|