File size: 5,270 Bytes
e882f51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import glob
import importlib
import os

import matplotlib
import numpy as np
import torch
import torch.distributions
import torch.optim
import torch.optim
import torch.utils.data

from preprocessing.process_pipeline import File2Batch
from utils.hparams import hparams
from utils.indexed_datasets import IndexedDataset
from utils.pitch_utils import norm_interp_f0

matplotlib.use('Agg')


class SvcDataset(torch.utils.data.Dataset):
    def __init__(self, prefix, shuffle=False):
        super().__init__()
        self.hparams = hparams
        self.shuffle = shuffle
        self.sort_by_len = hparams['sort_by_len']
        self.sizes = None
        self.data_dir = hparams['binary_data_dir']
        self.prefix = prefix
        self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy')
        self.indexed_ds = None
        # self.name2spk_id={}

        # pitch stats
        f0_stats_fn = f'{self.data_dir}/train_f0s_mean_std.npy'
        if os.path.exists(f0_stats_fn):
            hparams['f0_mean'], hparams['f0_std'] = self.f0_mean, self.f0_std = np.load(f0_stats_fn)
            hparams['f0_mean'] = float(hparams['f0_mean'])
            hparams['f0_std'] = float(hparams['f0_std'])
        else:
            hparams['f0_mean'], hparams['f0_std'] = self.f0_mean, self.f0_std = None, None

        if prefix == 'test':
            if hparams['test_input_dir'] != '':
                self.indexed_ds, self.sizes = self.load_test_inputs(hparams['test_input_dir'])
            else:
                if hparams['num_test_samples'] > 0:
                    self.avail_idxs = list(range(hparams['num_test_samples'])) + hparams['test_ids']
                    self.sizes = [self.sizes[i] for i in self.avail_idxs]

    @property
    def _sizes(self):
        return self.sizes

    def _get_item(self, index):
        if hasattr(self, 'avail_idxs') and self.avail_idxs is not None:
            index = self.avail_idxs[index]
        if self.indexed_ds is None:
            self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}')
        return self.indexed_ds[index]

    def __getitem__(self, index):
        item = self._get_item(index)
        max_frames = hparams['max_frames']
        spec = torch.Tensor(item['mel'])[:max_frames]
        # energy = (spec.exp() ** 2).sum(-1).sqrt()
        mel2ph = torch.LongTensor(item['mel2ph'])[:max_frames] if 'mel2ph' in item else None
        f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams)
        hubert = torch.Tensor(item['hubert'][:hparams['max_input_tokens']])
        pitch = torch.LongTensor(item.get("pitch"))[:max_frames]
        sample = {
            "id": index,
            "item_name": item['item_name'],
            "hubert": hubert,
            "mel": spec,
            "pitch": pitch,
            "f0": f0,
            "uv": uv,
            "mel2ph": mel2ph,
            "mel_nonpadding": spec.abs().sum(-1) > 0,
        }
        if hparams['use_energy_embed']:
            sample['energy'] = item['energy']
        if hparams['use_spk_embed']:
            sample["spk_embed"] = torch.Tensor(item['spk_embed'])
        if hparams['use_spk_id']:
            sample["spk_id"] = item['spk_id']
        return sample

    @staticmethod
    def collater(samples):
        return File2Batch.processed_input2batch(samples)

    @staticmethod
    def load_test_inputs(test_input_dir):
        inp_wav_paths = glob.glob(f'{test_input_dir}/*.wav') + glob.glob(f'{test_input_dir}/*.mp3')
        sizes = []
        items = []

        binarizer_cls = hparams.get("binarizer_cls", 'basics.base_binarizer.BaseBinarizer')
        pkg = ".".join(binarizer_cls.split(".")[:-1])
        cls_name = binarizer_cls.split(".")[-1]
        binarizer_cls = getattr(importlib.import_module(pkg), cls_name)
        from preprocessing.hubertinfer import HubertEncoder
        for wav_fn in inp_wav_paths:
            item_name = os.path.basename(wav_fn)
            wav_fn = wav_fn
            encoder = HubertEncoder(hparams['hubert_path'])
            item = binarizer_cls.process_item(item_name, {'wav_fn': wav_fn}, encoder)
            print(item)
            items.append(item)
            sizes.append(item['len'])
        return items, sizes

    def __len__(self):
        return len(self._sizes)

    def num_tokens(self, index):
        return self.size(index)

    def size(self, index):
        """Return an example's size as a float or tuple. This value is used when
        filtering a dataset with ``--max-positions``."""
        size = min(self._sizes[index], hparams['max_frames'])
        return size

    def ordered_indices(self):
        """Return an ordered list of indices. Batches will be constructed based
        on this order."""
        if self.shuffle:
            indices = np.random.permutation(len(self))
            if self.sort_by_len:
                indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')]
                # 先random, 然后稳定排序, 保证排序后同长度的数据顺序是依照random permutation的 (被其随机打乱).
        else:
            indices = np.arange(len(self))
        return indices

    @property
    def num_workers(self):
        return int(os.getenv('NUM_WORKERS', hparams['ds_workers']))