File size: 8,578 Bytes
2072d0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import torch
import librosa
import argparse
import numpy as np
import soundfile as sf
import pyworld as pw
import parselmouth
from ast import literal_eval
from slicer import Slicer
from ddsp.vocoder import load_model, F0_Extractor, Volume_Extractor, Units_Encoder
from ddsp.core import upsample
from enhancer import Enhancer
from tqdm import tqdm

def parse_args(args=None, namespace=None):
    """Parse command-line arguments."""
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-m",
        "--model_path",
        type=str,
        required=True,
        help="path to the model file",
    )
    parser.add_argument(
        "-i",
        "--input",
        type=str,
        required=True,
        help="path to the input audio file",
    )
    parser.add_argument(
        "-o",
        "--output",
        type=str,
        required=True,
        help="path to the output audio file",
    )
    parser.add_argument(
        "-id",
        "--spk_id",
        type=str,
        required=False,
        default=1,
        help="speaker id (for multi-speaker model) | default: 1",
    )
    parser.add_argument(
        "-mix",
        "--spk_mix_dict",
        type=str,
        required=False,
        default="None",
        help="mix-speaker dictionary (for multi-speaker model) | default: None",
    )
    parser.add_argument(
        "-k",
        "--key",
        type=str,
        required=False,
        default=0,
        help="key changed (number of semitones) | default: 0",
    )
    parser.add_argument(
        "-e",
        "--enhance",
        type=str,
        required=False,
        default='true',
        help="true or false | default: true",
    )
    parser.add_argument(
        "-pe",
        "--pitch_extractor",
        type=str,
        required=False,
        default='crepe',
        help="pitch extrator type: parselmouth, dio, harvest, crepe (default)",
    )
    parser.add_argument(
        "-fmin",
        "--f0_min",
        type=str,
        required=False,
        default=50,
        help="min f0 (Hz) | default: 50",
    )
    parser.add_argument(
        "-fmax",
        "--f0_max",
        type=str,
        required=False,
        default=1100,
        help="max f0 (Hz) | default: 1100",
    )
    parser.add_argument(
        "-th",
        "--threhold",
        type=str,
        required=False,
        default=-60,
        help="response threhold (dB) | default: -60",
    )
    parser.add_argument(
        "-eak",
        "--enhancer_adaptive_key",
        type=str,
        required=False,
        default=0,
        help="adapt the enhancer to a higher vocal range (number of semitones) | default: 0",
    )
    return parser.parse_args(args=args, namespace=namespace)

    
def split(audio, sample_rate, hop_size, db_thresh = -40, min_len = 5000):
    slicer = Slicer(
                sr=sample_rate,
                threshold=db_thresh,
                min_length=min_len)       
    chunks = dict(slicer.slice(audio))
    result = []
    for k, v in chunks.items():
        tag = v["split_time"].split(",")
        if tag[0] != tag[1]:
            start_frame = int(int(tag[0]) // hop_size)
            end_frame = int(int(tag[1]) // hop_size)
            if end_frame > start_frame:
                result.append((
                        start_frame, 
                        audio[int(start_frame * hop_size) : int(end_frame * hop_size)]))
    return result


def cross_fade(a: np.ndarray, b: np.ndarray, idx: int):
    result = np.zeros(idx + b.shape[0])
    fade_len = a.shape[0] - idx
    np.copyto(dst=result[:idx], src=a[:idx])
    k = np.linspace(0, 1.0, num=fade_len, endpoint=True)
    result[idx: a.shape[0]] = (1 - k) * a[idx:] + k * b[: fade_len]
    np.copyto(dst=result[a.shape[0]:], src=b[fade_len:])
    return result


if __name__ == '__main__':
    #device = 'cpu' 
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    
    # parse commands
    cmd = parse_args()
    
    # load ddsp model
    model, args = load_model(cmd.model_path, device=device)
    
    # load input
    audio, sample_rate = librosa.load(cmd.input, sr=None)
    if len(audio.shape) > 1:
        audio = librosa.to_mono(audio)
    hop_size = args.data.block_size * sample_rate / args.data.sampling_rate
    
    # extract f0
    print('Pitch extractor type: ' + cmd.pitch_extractor)
    pitch_extractor = F0_Extractor(
                        cmd.pitch_extractor, 
                        sample_rate, 
                        hop_size, 
                        float(cmd.f0_min), 
                        float(cmd.f0_max))
    print('Extracting the pitch curve of the input audio...')
    f0 = pitch_extractor.extract(audio, uv_interp = True, device = device)
    f0 = torch.from_numpy(f0).float().to(device).unsqueeze(-1).unsqueeze(0)
   
    # key change
    f0 = f0 * 2 ** (float(cmd.key) / 12)
    
    # extract volume 
    print('Extracting the volume envelope of the input audio...')
    volume_extractor = Volume_Extractor(hop_size)
    volume = volume_extractor.extract(audio)
    mask = (volume > 10 ** (float(cmd.threhold) / 20)).astype('float')
    mask = np.pad(mask, (4, 4), constant_values=(mask[0], mask[-1]))
    mask = np.array([np.max(mask[n : n + 9]) for n in range(len(mask) - 8)])
    mask = torch.from_numpy(mask).float().to(device).unsqueeze(-1).unsqueeze(0)
    mask = upsample(mask, args.data.block_size).squeeze(-1)
    volume = torch.from_numpy(volume).float().to(device).unsqueeze(-1).unsqueeze(0)
    
    # load units encoder
    units_encoder = Units_Encoder(
                        args.data.encoder, 
                        args.data.encoder_ckpt, 
                        args.data.encoder_sample_rate, 
                        args.data.encoder_hop_size, 
                        device = device)
                        
    # load enhancer
    if cmd.enhance == 'true':
        print('Enhancer type: ' + args.enhancer.type)
        enhancer = Enhancer(args.enhancer.type, args.enhancer.ckpt, device=device)
    else:
        print('Enhancer type: none (using raw output of ddsp)')
    
    # speaker id or mix-speaker dictionary
    spk_mix_dict = literal_eval(cmd.spk_mix_dict)
    if spk_mix_dict is not None:
        print('Mix-speaker mode')
    else:
        print('Speaker ID: '+ str(int(cmd.spk_id)))        
    spk_id = torch.LongTensor(np.array([[int(cmd.spk_id)]])).to(device)
    # forward and save the output
    result = np.zeros(0)
    current_length = 0
    segments = split(audio, sample_rate, hop_size)
    print('Cut the input audio into ' + str(len(segments)) + ' slices')
    with torch.no_grad():
        for segment in tqdm(segments):
            start_frame = segment[0]
            seg_input = torch.from_numpy(segment[1]).float().unsqueeze(0).to(device)
            seg_units = units_encoder.encode(seg_input, sample_rate, hop_size)
           
            seg_f0 = f0[:, start_frame : start_frame + seg_units.size(1), :]
            seg_volume = volume[:, start_frame : start_frame + seg_units.size(1), :]
            
            seg_output, _, (s_h, s_n) = model(seg_units, seg_f0, seg_volume, spk_id = spk_id, spk_mix_dict = spk_mix_dict)
            seg_output *= mask[:, start_frame * args.data.block_size : (start_frame + seg_units.size(1)) * args.data.block_size]
            
            if cmd.enhance == 'true':
                seg_output, output_sample_rate = enhancer.enhance(
                                                            seg_output, 
                                                            args.data.sampling_rate, 
                                                            seg_f0, 
                                                            args.data.block_size, 
                                                            adaptive_key = float(cmd.enhancer_adaptive_key))
            else:
                output_sample_rate = args.data.sampling_rate
            
            seg_output = seg_output.squeeze().cpu().numpy()
            
            silent_length = round(start_frame * args.data.block_size * output_sample_rate / args.data.sampling_rate) - current_length
            if silent_length >= 0:
                result = np.append(result, np.zeros(silent_length))
                result = np.append(result, seg_output)
            else:
                result = cross_fade(result, seg_output, current_length + silent_length)
            current_length = current_length + silent_length + len(seg_output)
        sf.write(cmd.output, result, output_sample_rate)