Spaces:
Runtime error
Runtime error
File size: 18,032 Bytes
05f2374 4d7fcc1 05f2374 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
import spaces
import os
import gradio as gr
import random
import torch
import logging
import numpy as np
from typing import Dict, Any, List
from diffusers import DiffusionPipeline
from api import PromptEnhancementSystem
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_ID = "black-forest-labs/FLUX.1-schnell"
DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
print(f"Using device: {DEVICE}")
logger = logging.getLogger(__name__)
# Initialize model
try:
print("Loading model...")
pipe = DiffusionPipeline.from_pretrained(
MODEL_ID,
torch_dtype=DTYPE
).to(DEVICE)
print("Model loaded successfully")
logger.info("Model loaded successfully")
except Exception as e:
print(f"Failed to load model: {str(e)}")
logger.error(f"Failed to load model: {str(e)}")
raise
@spaces.GPU()
def generate_multiple_images_batch(
improvement_axes,
current_gallery,
seed=42,
randomize_seed=False,
width=512,
height=512,
num_inference_steps=4,
current_prompt="",
initial_prompt="",
progress=gr.Progress(track_tqdm=True)
):
try:
# Use current_prompt if not empty, otherwise fall back to initial_prompt
input_prompt = current_prompt if current_prompt.strip() else initial_prompt
# Extract prompts from improvement axes or use the input prompt if no axes
prompts = [axis["enhanced_prompt"] for axis in improvement_axes if axis.get("enhanced_prompt")]
if not prompts and input_prompt:
prompts = [input_prompt]
if not prompts:
return [None] * 4 + [current_gallery] + [seed]
if randomize_seed:
current_seed = random.randint(0, MAX_SEED)
else:
current_seed = seed
print(f"Generating images with prompt: {input_prompt}")
print(f"Using seed: {current_seed}")
# Generate images with the selected prompt
generator = torch.Generator().manual_seed(current_seed)
images = pipe(
prompt=prompts,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
max_sequence_length=256, # Maximum allowed for schnell
guidance_scale=0.0
).images
# Pad with None if we have fewer than 4 images
while len(images) < 4:
images.append(None)
# Update gallery with new images
current_gallery = current_gallery or []
new_gallery = current_gallery + [(img, f"Prompt: {prompt}") for img, prompt in zip(images, prompts) if img is not None]
print("All images generated successfully")
return images[:4] + [new_gallery] + [current_seed]
except Exception as e:
print(f"Image generation error: {str(e)}")
logger.error(f"Image generation error: {str(e)}")
raise
def handle_image_select(evt: gr.SelectData, improvement_axes_data):
try:
if improvement_axes_data and isinstance(improvement_axes_data, list):
selected_index = evt.index[1] if isinstance(evt.index, tuple) else evt.index
if selected_index < len(improvement_axes_data):
selected_prompt = improvement_axes_data[selected_index].get("enhanced_prompt", "")
return selected_prompt
return ""
except Exception as e:
print(f"Error in handle_image_select: {str(e)}")
return ""
def handle_gallery_select(evt: gr.SelectData, gallery_data):
try:
if gallery_data and isinstance(evt.index, int) and evt.index < len(gallery_data):
image, prompt = gallery_data[evt.index]
# Remove "Prompt: " prefix if it exists
prompt = prompt.replace("Prompt: ", "") if prompt else ""
return {"prompt": prompt}, prompt
return None, ""
except Exception as e:
print(f"Error in handle_gallery_select: {str(e)}")
return None, ""
def clear_gallery():
return [], None, None, None, None # Returns empty gallery and clears the 4 images
def zip_gallery_images(gallery):
try:
if not gallery:
return None
import io
import zipfile
from datetime import datetime
import numpy as np
from PIL import Image
# Create zip file in memory
zip_buffer = io.BytesIO()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"gallery_images_{timestamp}.zip"
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
for i, (img_data, prompt) in enumerate(gallery):
try:
if img_data is not None:
# Convert numpy array to PIL Image if needed
if isinstance(img_data, np.ndarray):
img = Image.fromarray(np.uint8(img_data))
elif isinstance(img_data, Image.Image):
img = img_data
else:
print(f"Skipping image {i}: invalid type {type(img_data)}")
continue
# Save image to bytes
img_buffer = io.BytesIO()
img.save(img_buffer, format='PNG')
img_buffer.seek(0)
# Create filename with prompt
safe_prompt = "".join(c for c in prompt[:30] if c.isalnum() or c in (' ', '-', '_')).strip()
img_filename = f"image_{i+1}_{safe_prompt}.png"
# Add to zip
zip_file.writestr(img_filename, img_buffer.getvalue())
except Exception as img_error:
print(f"Error processing image {i}: {str(img_error)}")
continue
# Prepare zip for download
zip_buffer.seek(0)
# Return the file data and name
return {
"name": filename,
"data": zip_buffer.getvalue()
}
except Exception as e:
print(f"Error creating zip: {str(e)}")
return None
def create_interface():
print("Creating interface...")
api_key = os.getenv("GROQ_API_KEY")
base_url = os.getenv("API_BASE_URL")
if not api_key:
print("GROQ_API_KEY not found in environment variables")
raise ValueError("GROQ_API_KEY not found in environment variables")
system = PromptEnhancementSystem(api_key, base_url)
print("PromptEnhancementSystem initialized")
def update_interface(prompt, user_directive):
try:
print(f"\n=== Processing prompt: {prompt}")
print(f"User directive: {user_directive}")
state = system.start_session(prompt, user_directive)
improvement_axes = state.get("improvement_axes", [])
initial_analysis = state.get("initial_analysis", {})
enhanced_prompt = ""
if improvement_axes and len(improvement_axes) > 0:
enhanced_prompt = improvement_axes[0].get("enhanced_prompt", prompt)
button_updates = []
for i in range(4):
if i < len(improvement_axes):
focus_area = improvement_axes[i].get("focus_area", f"Option {i+1}")
button_updates.append(gr.update(visible=True, value=focus_area))
else:
button_updates.append(gr.update(visible=False))
return [prompt, enhanced_prompt] + [
initial_analysis.get(key, {}) for key in [
"subject_analysis",
"style_evaluation",
"technical_assessment",
"composition_review",
"context_evaluation",
"mood_assessment"
]
] + [
improvement_axes,
state.get("technical_recommendations", {}),
state
] + button_updates
except Exception as e:
print(f"Error in update_interface: {str(e)}")
logger.error(f"Error in update_interface: {str(e)}")
empty_analysis = {"score": 0, "strengths": [], "weaknesses": ["Error occurred"]}
return [prompt, prompt] + [empty_analysis] * 6 + [{}, {}, {}] + [gr.update(visible=False)] * 4
def handle_option_click(option_num, input_prompt, current_text, user_directive):
try:
print(f"\n=== Processing option {option_num}")
state = system.current_state
if state and "improvement_axes" in state:
improvement_axes = state["improvement_axes"]
if option_num < len(improvement_axes):
selected_prompt = improvement_axes[option_num]["enhanced_prompt"]
return [
input_prompt,
selected_prompt,
state.get("initial_analysis", {}).get("subject_analysis", {}),
state.get("initial_analysis", {}).get("style_evaluation", {}),
state.get("initial_analysis", {}).get("technical_assessment", {}),
state.get("initial_analysis", {}).get("composition_review", {}),
state.get("initial_analysis", {}).get("context_evaluation", {}),
state.get("initial_analysis", {}).get("mood_assessment", {}),
improvement_axes,
state.get("technical_recommendations", {}),
state
]
return handle_error()
except Exception as e:
print(f"Error in handle_option_click: {str(e)}")
logger.error(f"Error in handle_option_click: {str(e)}")
return handle_error()
def handle_error():
empty_analysis = {"score": 0, "strengths": [], "weaknesses": ["Error occurred"]}
return ["", "", empty_analysis, empty_analysis, empty_analysis, empty_analysis, empty_analysis, empty_analysis, [], {}, {}]
with gr.Blocks(
title="AI Prompt Enhancement System",
theme=gr.themes.Soft(),
css="footer {visibility: hidden}"
) as interface:
gr.Markdown("# 🎨 AI Prompt Enhancement & Image Generation System")
with gr.TabItem("Images Generation"):
with gr.Row():
input_prompt = gr.Textbox(
label="Initial Prompt",
placeholder="Enter your prompt here...",
lines=3,
scale=1
)
with gr.Row():
user_directive = gr.Textbox(
label="User Directive",
placeholder="Enter specific requirements...",
lines=2,
scale=1
)
with gr.Row():
start_btn = gr.Button("Start Enhancement", variant="primary")
with gr.Row():
current_prompt = gr.Textbox(
label="Current Prompt",
lines=3,
scale=1,
interactive=True
)
with gr.Row():
option_buttons = [gr.Button("", visible=False) for _ in range(4)]
with gr.Row():
finalize_btn = gr.Button("Generate Images", variant="primary")
with gr.Row():
generated_images = [
gr.Image(
label=f"Image {i+1}",
type="pil",
show_label=False,
height=256,
width=256,
interactive=False,
show_download_button=False,
elem_id=f"image_{i}"
) for i in range(4)
]
with gr.TabItem("Images Gallery"):
with gr.Row():
image_gallery = gr.Gallery(
label="Generated Images History",
show_label=False,
columns=4,
rows=None,
height=800,
object_fit="contain"
)
with gr.Row():
clear_gallery_btn = gr.Button("Clear Gallery", variant="secondary")
with gr.Row():
selected_image_data = gr.JSON(label="Selected Image Data", visible=True)
copy_to_prompt_btn = gr.Button("Copy Prompt to Current", visible=True)
with gr.TabItem("Image Generation Settings"):
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42
)
randomize_seed = gr.Checkbox(
label="Randomize seed",
value=True
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=256,
value=512
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=256,
value=512
)
num_inference_steps = gr.Slider(
label="Steps",
minimum=1,
maximum=50,
step=1,
value=4
)
with gr.TabItem("Initial Analysis"):
with gr.Row():
with gr.Column():
subject_analysis = gr.JSON(label="Subject Analysis")
with gr.Column():
style_evaluation = gr.JSON(label="Style Evaluation")
with gr.Column():
technical_assessment = gr.JSON(label="Technical Assessment")
with gr.Row():
with gr.Column():
composition_review = gr.JSON(label="Composition Review")
with gr.Column():
context_evaluation = gr.JSON(label="Context Evaluation")
with gr.Column():
mood_assessment = gr.JSON(label="Mood Assessment")
with gr.Accordion("Additional Information", open=False):
improvement_axes = gr.JSON(label="Improvement Axes")
technical_recommendations = gr.JSON(label="Technical Recommendations")
full_llm_response = gr.JSON(label="Full LLM Response")
# Add event handlers
for i, img in enumerate(generated_images):
img.select(
fn=handle_image_select,
inputs=[improvement_axes],
outputs=[current_prompt],
show_progress=False
)
start_btn.click(
update_interface,
inputs=[input_prompt, user_directive],
outputs=[
input_prompt,
current_prompt,
subject_analysis,
style_evaluation,
technical_assessment,
composition_review,
context_evaluation,
mood_assessment,
improvement_axes,
technical_recommendations,
full_llm_response
] + option_buttons
)
for i, btn in enumerate(option_buttons):
btn.click(
handle_option_click,
inputs=[
gr.Slider(value=i, visible=False),
input_prompt,
current_prompt,
user_directive
],
outputs=[
input_prompt,
current_prompt,
subject_analysis,
style_evaluation,
technical_assessment,
composition_review,
context_evaluation,
mood_assessment,
improvement_axes,
technical_recommendations,
full_llm_response
]
)
finalize_btn.click(
generate_multiple_images_batch,
inputs=[
improvement_axes,
image_gallery,
seed,
randomize_seed,
width,
height,
num_inference_steps,
current_prompt,
input_prompt
],
outputs=generated_images + [image_gallery] + [seed]
)
clear_gallery_btn.click(
clear_gallery,
inputs=[],
outputs=[image_gallery] + generated_images
)
# Add gallery selection handler
image_gallery.select(
fn=handle_gallery_select,
inputs=[image_gallery],
outputs=[selected_image_data, current_prompt]
)
# Add copy button handler
# Fix the copy button handler by adding a null check
copy_to_prompt_btn.click(
lambda x: x["prompt"] if x and isinstance(x, dict) and "prompt" in x else "",
inputs=[selected_image_data],
outputs=[current_prompt]
)
print("Interface setup complete")
return interface
if __name__ == "__main__":
interface = create_interface()
interface.launch() |