Spaces:
Build error
Build error
File size: 37,083 Bytes
f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d ba538d2 f4c516d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 |
"""
Copyright (C) 2021 Microsoft Corporation
"""
from collections import defaultdict
from fitz import Rect
def apply_threshold(objects, threshold):
"""
Filter out objects below a certain score.
"""
return [obj for obj in objects if obj['score'] >= threshold]
def apply_class_thresholds(bboxes, labels, scores, class_names, class_thresholds):
"""
Filter out bounding boxes whose confidence is below the confidence threshold for
its associated class label.
"""
# Apply class-specific thresholds
indices_above_threshold = [idx for idx, (score, label) in enumerate(zip(scores, labels))
if score >= class_thresholds[
class_names[label]
]
]
bboxes = [bboxes[idx] for idx in indices_above_threshold]
scores = [scores[idx] for idx in indices_above_threshold]
labels = [labels[idx] for idx in indices_above_threshold]
return bboxes, scores, labels
def iou(bbox1, bbox2):
"""
Compute the intersection-over-union of two bounding boxes.
"""
intersection = Rect(bbox1).intersect(bbox2)
union = Rect(bbox1).include_rect(bbox2)
union_area = union.get_area()
if union_area > 0:
return intersection.get_area() / union.get_area()
return 0
def iob(bbox1, bbox2):
"""
Compute the intersection area over box area, for bbox1.
"""
intersection = Rect(bbox1).intersect(bbox2)
bbox1_area = Rect(bbox1).get_area()
if bbox1_area > 0:
return intersection.get_area() / bbox1_area
return 0
def objects_to_cells(table, objects_in_table, tokens_in_table, class_map, class_thresholds):
"""
Process the bounding boxes produced by the table structure recognition model
and the token/word/span bounding boxes into table cells.
Also return a confidence score based on how well the text was able to be
uniquely slotted into the cells detected by the table model.
"""
table_structures = objects_to_table_structures(table, objects_in_table, tokens_in_table, class_map,
class_thresholds)
# Check for a valid table
if len(table_structures['columns']) < 1 or len(table_structures['rows']) < 1:
cells = []#None
confidence_score = 0
else:
cells, confidence_score = table_structure_to_cells(table_structures, tokens_in_table, table['bbox'])
return table_structures, cells, confidence_score
def objects_to_table_structures(table_object, objects_in_table, tokens_in_table, class_names, class_thresholds):
"""
Process the bounding boxes produced by the table structure recognition model into
a *consistent* set of table structures (rows, columns, supercells, headers).
This entails resolving conflicts/overlaps, and ensuring the boxes meet certain alignment
conditions (for example: rows should all have the same width, etc.).
"""
page_num = table_object['page_num']
table_structures = {}
columns = [obj for obj in objects_in_table if class_names[obj['label']] == 'table column']
rows = [obj for obj in objects_in_table if class_names[obj['label']] == 'table row']
headers = [obj for obj in objects_in_table if class_names[obj['label']] == 'table column header']
supercells = [obj for obj in objects_in_table if class_names[obj['label']] == 'table spanning cell']
for obj in supercells:
obj['subheader'] = False
subheaders = [obj for obj in objects_in_table if class_names[obj['label']] == 'table projected row header']
for obj in subheaders:
obj['subheader'] = True
supercells += subheaders
for obj in rows:
obj['header'] = False
for header_obj in headers:
if iob(obj['bbox'], header_obj['bbox']) >= 0.5:
obj['header'] = True
for row in rows:
row['page'] = page_num
for column in columns:
column['page'] = page_num
#Refine table structures
rows = refine_rows(rows, tokens_in_table, class_thresholds['table row'])
columns = refine_columns(columns, tokens_in_table, class_thresholds['table column'])
# Shrink table bbox to just the total height of the rows
# and the total width of the columns
row_rect = Rect()
for obj in rows:
row_rect.include_rect(obj['bbox'])
column_rect = Rect()
for obj in columns:
column_rect.include_rect(obj['bbox'])
table_object['row_column_bbox'] = [column_rect[0], row_rect[1], column_rect[2], row_rect[3]]
table_object['bbox'] = table_object['row_column_bbox']
# Process the rows and columns into a complete segmented table
columns = align_columns(columns, table_object['row_column_bbox'])
rows = align_rows(rows, table_object['row_column_bbox'])
table_structures['rows'] = rows
table_structures['columns'] = columns
table_structures['headers'] = headers
table_structures['supercells'] = supercells
if len(rows) > 0 and len(columns) > 1:
table_structures = refine_table_structures(table_object['bbox'], table_structures, tokens_in_table, class_thresholds)
return table_structures
def refine_rows(rows, tokens, score_threshold):
"""
Apply operations to the detected rows, such as
thresholding, NMS, and alignment.
"""
if len(tokens) > 0:
rows = nms_by_containment(rows, tokens, overlap_threshold=0.5)
# remove_objects_without_content(tokens, rows) # TODO
else:
rows = nms(rows, match_criteria="object2_overlap",
match_threshold=0.5, keep_higher=True)
if len(rows) > 1:
rows = sort_objects_top_to_bottom(rows)
return rows
def refine_columns(columns, tokens, score_threshold):
"""
Apply operations to the detected columns, such as
thresholding, NMS, and alignment.
"""
if len(tokens) > 0:
columns = nms_by_containment(columns, tokens, overlap_threshold=0.5)
# remove_objects_without_content(tokens, columns) # TODO
else:
columns = nms(columns, match_criteria="object2_overlap",
match_threshold=0.25, keep_higher=True)
if len(columns) > 1:
columns = sort_objects_left_to_right(columns)
return columns
def nms_by_containment(container_objects, package_objects, overlap_threshold=0.5):
"""
Non-maxima suppression (NMS) of objects based on shared containment of other objects.
"""
container_objects = sort_objects_by_score(container_objects)
num_objects = len(container_objects)
suppression = [False for obj in container_objects]
packages_by_container, _, _ = slot_into_containers(container_objects, package_objects, overlap_threshold=overlap_threshold,
unique_assignment=True, forced_assignment=False)
for object2_num in range(1, num_objects):
object2_packages = set(packages_by_container[object2_num])
if len(object2_packages) == 0:
suppression[object2_num] = True
for object1_num in range(object2_num):
if not suppression[object1_num]:
object1_packages = set(packages_by_container[object1_num])
if len(object2_packages.intersection(object1_packages)) > 0:
suppression[object2_num] = True
final_objects = [obj for idx, obj in enumerate(container_objects) if not suppression[idx]]
return final_objects
def slot_into_containers(container_objects, package_objects, overlap_threshold=0.5,
unique_assignment=True, forced_assignment=False):
"""
Slot a collection of objects into the container they occupy most (the container which holds the largest fraction of the object).
"""
best_match_scores = []
container_assignments = [[] for container in container_objects]
package_assignments = [[] for package in package_objects]
if len(container_objects) == 0 or len(package_objects) == 0:
return container_assignments, package_assignments, best_match_scores
match_scores = defaultdict(dict)
for package_num, package in enumerate(package_objects):
match_scores = []
package_rect = Rect(package['bbox'])
package_area = package_rect.get_area()
for container_num, container in enumerate(container_objects):
container_rect = Rect(container['bbox'])
intersect_area = container_rect.intersect(package['bbox']).get_area()
overlap_fraction = intersect_area / package_area
match_scores.append({'container': container, 'container_num': container_num, 'score': overlap_fraction})
sorted_match_scores = sort_objects_by_score(match_scores)
best_match_score = sorted_match_scores[0]
best_match_scores.append(best_match_score['score'])
if forced_assignment or best_match_score['score'] >= overlap_threshold:
container_assignments[best_match_score['container_num']].append(package_num)
package_assignments[package_num].append(best_match_score['container_num'])
if not unique_assignment: # slot package into all eligible slots
for match_score in sorted_match_scores[1:]:
if match_score['score'] >= overlap_threshold:
container_assignments[match_score['container_num']].append(package_num)
package_assignments[package_num].append(match_score['container_num'])
else:
break
return container_assignments, package_assignments, best_match_scores
def sort_objects_by_score(objects, reverse=True):
"""
Put any set of objects in order from high score to low score.
"""
if reverse:
sign = -1
else:
sign = 1
return sorted(objects, key=lambda k: sign*k['score'])
def remove_objects_without_content(page_spans, objects):
"""
Remove any objects (these can be rows, columns, supercells, etc.) that don't
have any text associated with them.
"""
for obj in objects[:]:
object_text, _ = extract_text_inside_bbox(page_spans, obj['bbox'])
if len(object_text.strip()) == 0:
objects.remove(obj)
def extract_text_inside_bbox(spans, bbox):
"""
Extract the text inside a bounding box.
"""
bbox_spans = get_bbox_span_subset(spans, bbox)
bbox_text = extract_text_from_spans(bbox_spans, remove_integer_superscripts=True)
return bbox_text, bbox_spans
def get_bbox_span_subset(spans, bbox, threshold=0.5):
"""
Reduce the set of spans to those that fall within a bounding box.
threshold: the fraction of the span that must overlap with the bbox.
"""
span_subset = []
for span in spans:
if overlaps(span['bbox'], bbox, threshold):
span_subset.append(span)
return span_subset
def overlaps(bbox1, bbox2, threshold=0.5):
"""
Test if more than "threshold" fraction of bbox1 overlaps with bbox2.
"""
rect1 = Rect(list(bbox1))
area1 = rect1.get_area()
if area1 == 0:
return False
return rect1.intersect(list(bbox2)).get_area()/area1 >= threshold
def extract_text_from_spans(spans, join_with_space=True, remove_integer_superscripts=True):
"""
Convert a collection of page tokens/words/spans into a single text string.
"""
if join_with_space:
join_char = " "
else:
join_char = ""
spans_copy = spans[:]
if remove_integer_superscripts:
for span in spans:
if not 'flags' in span:
continue
flags = span['flags']
if flags & 2**0: # superscript flag
if is_int(span['text']):
spans_copy.remove(span)
else:
span['superscript'] = True
if len(spans_copy) == 0:
return ""
spans_copy.sort(key=lambda span: span['span_num'])
spans_copy.sort(key=lambda span: span['line_num'])
spans_copy.sort(key=lambda span: span['block_num'])
# Force the span at the end of every line within a block to have exactly one space
# unless the line ends with a space or ends with a non-space followed by a hyphen
line_texts = []
line_span_texts = [spans_copy[0]['text']]
for span1, span2 in zip(spans_copy[:-1], spans_copy[1:]):
if not span1['block_num'] == span2['block_num'] or not span1['line_num'] == span2['line_num']:
line_text = join_char.join(line_span_texts).strip()
if (len(line_text) > 0
and not line_text[-1] == ' '
and not (len(line_text) > 1 and line_text[-1] == "-" and not line_text[-2] == ' ')):
if not join_with_space:
line_text += ' '
line_texts.append(line_text)
line_span_texts = [span2['text']]
else:
line_span_texts.append(span2['text'])
line_text = join_char.join(line_span_texts)
line_texts.append(line_text)
return join_char.join(line_texts).strip()
def sort_objects_left_to_right(objs):
"""
Put the objects in order from left to right.
"""
return sorted(objs, key=lambda k: k['bbox'][0] + k['bbox'][2])
def sort_objects_top_to_bottom(objs):
"""
Put the objects in order from top to bottom.
"""
return sorted(objs, key=lambda k: k['bbox'][1] + k['bbox'][3])
def align_columns(columns, bbox):
"""
For every column, align the top and bottom boundaries to the final
table bounding box.
"""
try:
for column in columns:
column['bbox'][1] = bbox[1]
column['bbox'][3] = bbox[3]
except Exception as err:
print("Could not align columns: {}".format(err))
pass
return columns
def align_rows(rows, bbox):
"""
For every row, align the left and right boundaries to the final
table bounding box.
"""
try:
for row in rows:
row['bbox'][0] = bbox[0]
row['bbox'][2] = bbox[2]
except Exception as err:
print("Could not align rows: {}".format(err))
pass
return rows
def refine_table_structures(table_bbox, table_structures, page_spans, class_thresholds):
"""
Apply operations to the detected table structure objects such as
thresholding, NMS, and alignment.
"""
rows = table_structures["rows"]
columns = table_structures['columns']
#columns = fill_column_gaps(columns, table_bbox)
#rows = fill_row_gaps(rows, table_bbox)
# Process the headers
headers = table_structures['headers']
headers = apply_threshold(headers, class_thresholds["table column header"])
headers = nms(headers)
headers = align_headers(headers, rows)
# Process supercells
supercells = [elem for elem in table_structures['supercells'] if not elem['subheader']]
subheaders = [elem for elem in table_structures['supercells'] if elem['subheader']]
supercells = apply_threshold(supercells, class_thresholds["table spanning cell"])
subheaders = apply_threshold(subheaders, class_thresholds["table projected row header"])
supercells += subheaders
# Align before NMS for supercells because alignment brings them into agreement
# with rows and columns first; if supercells still overlap after this operation,
# the threshold for NMS can basically be lowered to just above 0
supercells = align_supercells(supercells, rows, columns)
supercells = nms_supercells(supercells)
header_supercell_tree(supercells)
table_structures['columns'] = columns
table_structures['rows'] = rows
table_structures['supercells'] = supercells
table_structures['headers'] = headers
return table_structures
def nms(objects, match_criteria="object2_overlap", match_threshold=0.05, keep_higher=True):
"""
A customizable version of non-maxima suppression (NMS).
Default behavior: If a lower-confidence object overlaps more than 5% of its area
with a higher-confidence object, remove the lower-confidence object.
objects: set of dicts; each object dict must have a 'bbox' and a 'score' field
match_criteria: how to measure how much two objects "overlap"
match_threshold: the cutoff for determining that overlap requires suppression of one object
keep_higher: if True, keep the object with the higher metric; otherwise, keep the lower
"""
if len(objects) == 0:
return []
objects = sort_objects_by_score(objects, reverse=keep_higher)
num_objects = len(objects)
suppression = [False for obj in objects]
for object2_num in range(1, num_objects):
object2_rect = Rect(objects[object2_num]['bbox'])
object2_area = object2_rect.get_area()
for object1_num in range(object2_num):
if not suppression[object1_num]:
object1_rect = Rect(objects[object1_num]['bbox'])
object1_area = object1_rect.get_area()
intersect_area = object1_rect.intersect(object2_rect).get_area()
try:
if match_criteria=="object1_overlap":
metric = intersect_area / object1_area
elif match_criteria=="object2_overlap":
metric = intersect_area / object2_area
elif match_criteria=="iou":
metric = intersect_area / (object1_area + object2_area - intersect_area)
if metric >= match_threshold:
suppression[object2_num] = True
break
except Exception:
# Intended to recover from divide-by-zero
pass
return [obj for idx, obj in enumerate(objects) if not suppression[idx]]
def align_headers(headers, rows):
"""
Adjust the header boundary to be the convex hull of the rows it intersects
at least 50% of the height of.
For now, we are not supporting tables with multiple headers, so we need to
eliminate anything besides the top-most header.
"""
aligned_headers = []
for row in rows:
row['header'] = False
header_row_nums = []
for header in headers:
for row_num, row in enumerate(rows):
row_height = row['bbox'][3] - row['bbox'][1]
min_row_overlap = max(row['bbox'][1], header['bbox'][1])
max_row_overlap = min(row['bbox'][3], header['bbox'][3])
overlap_height = max_row_overlap - min_row_overlap
if overlap_height / row_height >= 0.5:
header_row_nums.append(row_num)
if len(header_row_nums) == 0:
return aligned_headers
header_rect = Rect()
if header_row_nums[0] > 0:
header_row_nums = list(range(header_row_nums[0]+1)) + header_row_nums
last_row_num = -1
for row_num in header_row_nums:
if row_num == last_row_num + 1:
row = rows[row_num]
row['header'] = True
header_rect = header_rect.include_rect(row['bbox'])
last_row_num = row_num
else:
# Break as soon as a non-header row is encountered.
# This ignores any subsequent rows in the table labeled as a header.
# Having more than 1 header is not supported currently.
break
header = {'bbox': list(header_rect)}
aligned_headers.append(header)
return aligned_headers
def align_supercells(supercells, rows, columns):
"""
For each supercell, align it to the rows it intersects 50% of the height of,
and the columns it intersects 50% of the width of.
Eliminate supercells for which there are no rows and columns it intersects 50% with.
"""
aligned_supercells = []
for supercell in supercells:
supercell['header'] = False
row_bbox_rect = None
col_bbox_rect = None
intersecting_header_rows = set()
intersecting_data_rows = set()
for row_num, row in enumerate(rows):
row_height = row['bbox'][3] - row['bbox'][1]
supercell_height = supercell['bbox'][3] - supercell['bbox'][1]
min_row_overlap = max(row['bbox'][1], supercell['bbox'][1])
max_row_overlap = min(row['bbox'][3], supercell['bbox'][3])
overlap_height = max_row_overlap - min_row_overlap
if 'span' in supercell:
overlap_fraction = max(overlap_height/row_height,
overlap_height/supercell_height)
else:
overlap_fraction = overlap_height / row_height
if overlap_fraction >= 0.5:
if 'header' in row and row['header']:
intersecting_header_rows.add(row_num)
else:
intersecting_data_rows.add(row_num)
# Supercell cannot span across the header boundary; eliminate whichever
# group of rows is the smallest
supercell['header'] = False
if len(intersecting_data_rows) > 0 and len(intersecting_header_rows) > 0:
if len(intersecting_data_rows) > len(intersecting_header_rows):
intersecting_header_rows = set()
else:
intersecting_data_rows = set()
if len(intersecting_header_rows) > 0:
supercell['header'] = True
elif 'span' in supercell:
continue # Require span supercell to be in the header
intersecting_rows = intersecting_data_rows.union(intersecting_header_rows)
# Determine vertical span of aligned supercell
for row_num in intersecting_rows:
if row_bbox_rect is None:
row_bbox_rect = Rect(rows[row_num]['bbox'])
else:
row_bbox_rect = row_bbox_rect.include_rect(rows[row_num]['bbox'])
if row_bbox_rect is None:
continue
intersecting_cols = []
for col_num, col in enumerate(columns):
col_width = col['bbox'][2] - col['bbox'][0]
supercell_width = supercell['bbox'][2] - supercell['bbox'][0]
min_col_overlap = max(col['bbox'][0], supercell['bbox'][0])
max_col_overlap = min(col['bbox'][2], supercell['bbox'][2])
overlap_width = max_col_overlap - min_col_overlap
if 'span' in supercell:
overlap_fraction = max(overlap_width/col_width,
overlap_width/supercell_width)
# Multiply by 2 effectively lowers the threshold to 0.25
if supercell['header']:
overlap_fraction = overlap_fraction * 2
else:
overlap_fraction = overlap_width / col_width
if overlap_fraction >= 0.5:
intersecting_cols.append(col_num)
if col_bbox_rect is None:
col_bbox_rect = Rect(col['bbox'])
else:
col_bbox_rect = col_bbox_rect.include_rect(col['bbox'])
if col_bbox_rect is None:
continue
supercell_bbox = list(row_bbox_rect.intersect(col_bbox_rect))
supercell['bbox'] = supercell_bbox
# Only a true supercell if it joins across multiple rows or columns
if (len(intersecting_rows) > 0 and len(intersecting_cols) > 0
and (len(intersecting_rows) > 1 or len(intersecting_cols) > 1)):
supercell['row_numbers'] = list(intersecting_rows)
supercell['column_numbers'] = intersecting_cols
aligned_supercells.append(supercell)
# A span supercell in the header means there must be supercells above it in the header
if 'span' in supercell and supercell['header'] and len(supercell['column_numbers']) > 1:
for row_num in range(0, min(supercell['row_numbers'])):
new_supercell = {'row_numbers': [row_num], 'column_numbers': supercell['column_numbers'],
'score': supercell['score'], 'propagated': True}
new_supercell_columns = [columns[idx] for idx in supercell['column_numbers']]
new_supercell_rows = [rows[idx] for idx in supercell['row_numbers']]
bbox = [min([column['bbox'][0] for column in new_supercell_columns]),
min([row['bbox'][1] for row in new_supercell_rows]),
max([column['bbox'][2] for column in new_supercell_columns]),
max([row['bbox'][3] for row in new_supercell_rows])]
new_supercell['bbox'] = bbox
aligned_supercells.append(new_supercell)
return aligned_supercells
def nms_supercells(supercells):
"""
A NMS scheme for supercells that first attempts to shrink supercells to
resolve overlap.
If two supercells overlap the same (sub)cell, shrink the lower confidence
supercell to resolve the overlap. If shrunk supercell is empty, remove it.
"""
supercells = sort_objects_by_score(supercells)
num_supercells = len(supercells)
suppression = [False for supercell in supercells]
for supercell2_num in range(1, num_supercells):
supercell2 = supercells[supercell2_num]
for supercell1_num in range(supercell2_num):
supercell1 = supercells[supercell1_num]
remove_supercell_overlap(supercell1, supercell2)
if ((len(supercell2['row_numbers']) < 2 and len(supercell2['column_numbers']) < 2)
or len(supercell2['row_numbers']) == 0 or len(supercell2['column_numbers']) == 0):
suppression[supercell2_num] = True
return [obj for idx, obj in enumerate(supercells) if not suppression[idx]]
def header_supercell_tree(supercells):
"""
Make sure no supercell in the header is below more than one supercell in any row above it.
The cells in the header form a tree, but a supercell with more than one supercell in a row
above it means that some cell has more than one parent, which is not allowed. Eliminate
any supercell that would cause this to be violated.
"""
header_supercells = [supercell for supercell in supercells if 'header' in supercell and supercell['header']]
header_supercells = sort_objects_by_score(header_supercells)
for header_supercell in header_supercells[:]:
ancestors_by_row = defaultdict(int)
min_row = min(header_supercell['row_numbers'])
for header_supercell2 in header_supercells:
max_row2 = max(header_supercell2['row_numbers'])
if max_row2 < min_row:
if (set(header_supercell['column_numbers']).issubset(
set(header_supercell2['column_numbers']))):
for row2 in header_supercell2['row_numbers']:
ancestors_by_row[row2] += 1
for row in range(0, min_row):
if not ancestors_by_row[row] == 1:
supercells.remove(header_supercell)
break
def table_structure_to_cells(table_structures, table_spans, table_bbox):
"""
Assuming the row, column, supercell, and header bounding boxes have
been refined into a set of consistent table structures, process these
table structures into table cells. This is a universal representation
format for the table, which can later be exported to Pandas or CSV formats.
Classify the cells as header/access cells or data cells
based on if they intersect with the header bounding box.
"""
columns = table_structures['columns']
rows = table_structures['rows']
supercells = table_structures['supercells']
cells = []
subcells = []
# Identify complete cells and subcells
for column_num, column in enumerate(columns):
for row_num, row in enumerate(rows):
column_rect = Rect(list(column['bbox']))
row_rect = Rect(list(row['bbox']))
cell_rect = row_rect.intersect(column_rect)
header = 'header' in row and row['header']
cell = {'bbox': list(cell_rect), 'column_nums': [column_num], 'row_nums': [row_num],
'header': header}
cell['subcell'] = False
for supercell in supercells:
supercell_rect = Rect(list(supercell['bbox']))
if (supercell_rect.intersect(cell_rect).get_area()
/ cell_rect.get_area()) > 0.5:
cell['subcell'] = True
break
if cell['subcell']:
subcells.append(cell)
else:
#cell_text = extract_text_inside_bbox(table_spans, cell['bbox'])
#cell['cell_text'] = cell_text
cell['subheader'] = False
cells.append(cell)
for supercell in supercells:
supercell_rect = Rect(list(supercell['bbox']))
cell_columns = set()
cell_rows = set()
cell_rect = None
header = True
for subcell in subcells:
subcell_rect = Rect(list(subcell['bbox']))
subcell_rect_area = subcell_rect.get_area()
if (subcell_rect.intersect(supercell_rect).get_area()
/ subcell_rect_area) > 0.5:
if cell_rect is None:
cell_rect = Rect(list(subcell['bbox']))
else:
cell_rect.include_rect(Rect(list(subcell['bbox'])))
cell_rows = cell_rows.union(set(subcell['row_nums']))
cell_columns = cell_columns.union(set(subcell['column_nums']))
# By convention here, all subcells must be classified
# as header cells for a supercell to be classified as a header cell;
# otherwise, this could lead to a non-rectangular header region
header = header and 'header' in subcell and subcell['header']
if len(cell_rows) > 0 and len(cell_columns) > 0:
cell = {'bbox': list(cell_rect), 'column_nums': list(cell_columns), 'row_nums': list(cell_rows),
'header': header, 'subheader': supercell['subheader']}
cells.append(cell)
# Compute a confidence score based on how well the page tokens
# slot into the cells reported by the model
_, _, cell_match_scores = slot_into_containers(cells, table_spans)
try:
mean_match_score = sum(cell_match_scores) / len(cell_match_scores)
min_match_score = min(cell_match_scores)
confidence_score = (mean_match_score + min_match_score)/2
except:
confidence_score = 0
# Dilate rows and columns before final extraction
#dilated_columns = fill_column_gaps(columns, table_bbox)
dilated_columns = columns
#dilated_rows = fill_row_gaps(rows, table_bbox)
dilated_rows = rows
for cell in cells:
column_rect = Rect()
for column_num in cell['column_nums']:
column_rect.include_rect(list(dilated_columns[column_num]['bbox']))
row_rect = Rect()
for row_num in cell['row_nums']:
row_rect.include_rect(list(dilated_rows[row_num]['bbox']))
cell_rect = column_rect.intersect(row_rect)
cell['bbox'] = list(cell_rect)
span_nums_by_cell, _, _ = slot_into_containers(cells, table_spans, overlap_threshold=0.001,
unique_assignment=True, forced_assignment=False)
for cell, cell_span_nums in zip(cells, span_nums_by_cell):
cell_spans = [table_spans[num] for num in cell_span_nums]
# TODO: Refine how text is extracted; should be character-based, not span-based;
# but need to associate
# cell['cell_text'] = extract_text_from_spans(cell_spans, remove_integer_superscripts=False) # TODO
cell['spans'] = cell_spans
# Adjust the row, column, and cell bounding boxes to reflect the extracted text
num_rows = len(rows)
rows = sort_objects_top_to_bottom(rows)
num_columns = len(columns)
columns = sort_objects_left_to_right(columns)
min_y_values_by_row = defaultdict(list)
max_y_values_by_row = defaultdict(list)
min_x_values_by_column = defaultdict(list)
max_x_values_by_column = defaultdict(list)
for cell in cells:
min_row = min(cell["row_nums"])
max_row = max(cell["row_nums"])
min_column = min(cell["column_nums"])
max_column = max(cell["column_nums"])
for span in cell['spans']:
min_x_values_by_column[min_column].append(span['bbox'][0])
min_y_values_by_row[min_row].append(span['bbox'][1])
max_x_values_by_column[max_column].append(span['bbox'][2])
max_y_values_by_row[max_row].append(span['bbox'][3])
for row_num, row in enumerate(rows):
if len(min_x_values_by_column[0]) > 0:
row['bbox'][0] = min(min_x_values_by_column[0])
if len(min_y_values_by_row[row_num]) > 0:
row['bbox'][1] = min(min_y_values_by_row[row_num])
if len(max_x_values_by_column[num_columns-1]) > 0:
row['bbox'][2] = max(max_x_values_by_column[num_columns-1])
if len(max_y_values_by_row[row_num]) > 0:
row['bbox'][3] = max(max_y_values_by_row[row_num])
for column_num, column in enumerate(columns):
if len(min_x_values_by_column[column_num]) > 0:
column['bbox'][0] = min(min_x_values_by_column[column_num])
if len(min_y_values_by_row[0]) > 0:
column['bbox'][1] = min(min_y_values_by_row[0])
if len(max_x_values_by_column[column_num]) > 0:
column['bbox'][2] = max(max_x_values_by_column[column_num])
if len(max_y_values_by_row[num_rows-1]) > 0:
column['bbox'][3] = max(max_y_values_by_row[num_rows-1])
for cell in cells:
row_rect = Rect()
column_rect = Rect()
for row_num in cell['row_nums']:
row_rect.include_rect(list(rows[row_num]['bbox']))
for column_num in cell['column_nums']:
column_rect.include_rect(list(columns[column_num]['bbox']))
cell_rect = row_rect.intersect(column_rect)
if cell_rect.get_area() > 0:
cell['bbox'] = list(cell_rect)
pass
return cells, confidence_score
def remove_supercell_overlap(supercell1, supercell2):
"""
This function resolves overlap between supercells (supercells must be
disjoint) by iteratively shrinking supercells by the fewest grid cells
necessary to resolve the overlap.
Example:
If two supercells overlap at grid cell (R, C), and supercell #1 is less
confident than supercell #2, we eliminate either row R from supercell #1
or column C from supercell #1 by comparing the number of columns in row R
versus the number of rows in column C. If the number of columns in row R
is less than the number of rows in column C, we eliminate row R from
supercell #1. This resolves the overlap by removing fewer grid cells from
supercell #1 than if we eliminated column C from it.
"""
common_rows = set(supercell1['row_numbers']).intersection(set(supercell2['row_numbers']))
common_columns = set(supercell1['column_numbers']).intersection(set(supercell2['column_numbers']))
# While the supercells have overlapping grid cells, continue shrinking the less-confident
# supercell one row or one column at a time
while len(common_rows) > 0 and len(common_columns) > 0:
# Try to shrink the supercell as little as possible to remove the overlap;
# if the supercell has fewer rows than columns, remove an overlapping column,
# because this removes fewer grid cells from the supercell;
# otherwise remove an overlapping row
if len(supercell2['row_numbers']) < len(supercell2['column_numbers']):
min_column = min(supercell2['column_numbers'])
max_column = max(supercell2['column_numbers'])
if max_column in common_columns:
common_columns.remove(max_column)
supercell2['column_numbers'].remove(max_column)
elif min_column in common_columns:
common_columns.remove(min_column)
supercell2['column_numbers'].remove(min_column)
else:
supercell2['column_numbers'] = []
common_columns = set()
else:
min_row = min(supercell2['row_numbers'])
max_row = max(supercell2['row_numbers'])
if max_row in common_rows:
common_rows.remove(max_row)
supercell2['row_numbers'].remove(max_row)
elif min_row in common_rows:
common_rows.remove(min_row)
supercell2['row_numbers'].remove(min_row)
else:
supercell2['row_numbers'] = []
common_rows = set() |