Spaces:
Runtime error
Runtime error
File size: 21,862 Bytes
8b79aed 2d6ef72 8b79aed e80121c 8b79aed 2d6ef72 e80121c 8b79aed 2d6ef72 8b79aed 2d6ef72 8b79aed 2d6ef72 8b79aed 2d6ef72 8b79aed 2d6ef72 8b79aed 2d6ef72 8b79aed 2d6ef72 8b79aed 2d6ef72 8b79aed 2d6ef72 8b79aed 2d6ef72 8b79aed 2d6ef72 8b79aed e80121c 8b79aed 2d6ef72 8b79aed 2d6ef72 8b79aed e80121c 8b79aed e80121c 8b79aed e80121c 8b79aed 2d6ef72 8b79aed 2d6ef72 e80121c 2d6ef72 e80121c 2d6ef72 e80121c 2d6ef72 e80121c 2d6ef72 e80121c 2d6ef72 e80121c 2d6ef72 e80121c 2d6ef72 e80121c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
import os
from langchain.agents import tool
from langchain_community.chat_models import ChatOpenAI
import pandas as pd
from langchain_core.utils.function_calling import convert_to_openai_function
from langchain.schema.runnable import RunnablePassthrough
from langchain.agents.format_scratchpad import format_to_openai_functions
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
from langchain.agents import AgentExecutor
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from config import settings
from database_functions import set_recommendation_count,get_recommendation_count
MEMORY = None
SESSION_ID= ""
def get_embeddings(text_list):
encoded_input = settings.tokenizer(
text_list, padding=True, truncation=True, return_tensors="pt"
)
# encoded_input = {k: v.to(device) for k, v in encoded_input.items()}
encoded_input = {k: v for k, v in encoded_input.items()}
model_output = settings.model(**encoded_input)
cls_pool = model_output.last_hidden_state[:, 0]
return cls_pool
def reg(chat):
question_embedding = get_embeddings([chat]).cpu().detach().numpy()
scores, samples = settings.dataset.get_nearest_examples(
"embeddings", question_embedding, k=5
)
samples_df = pd.DataFrame.from_dict(samples)
# print(samples_df.columns)
samples_df["scores"] = scores
samples_df.sort_values("scores", ascending=False, inplace=True)
return samples_df[['title', 'cover_image', 'referral_link', 'category_id']]
@tool("MOXICASTS-questions", )
def moxicast(prompt: str) -> str:
"""this function is used when user wants to know about MOXICASTS feature.MOXICASTS is a feature of BMoxi for Advice and guidance on life topics.
Args:
prompt (string): user query
Returns:
string: answer of the query
"""
context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. MOXICASTS is a feature of BMoxi for Advice and guidance on life topics."
llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
# Define the system prompt
system_template = """ you are going to make answer only using this context not use any other information
context : {context}
Input: {input}
"""
response = llm.invoke(system_template.format(context=context, input=prompt))
return response.content
@tool("PEP-TALKPODS-questions", )
def peptalks(prompt: str) -> str:
"""this function is used when user wants to know about PEP TALK PODS feature.PEP TALK PODS: Quick audio pep talks for boosting mood and motivation.
Args:
prompt (string): user query
Returns:
string: answer of the query
"""
context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. PEP TALK PODS: Quick audio pep talks for boosting mood and motivation."
llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
# Define the system prompt
system_template = """ you are going to make answer only using this context not use any other information
context : {context}
Input: {input}
"""
response = llm.invoke(system_template.format(context=context, input=prompt))
return response.content
@tool("SOCIAL-SANCTUARY-questions", )
def sactury(prompt: str) -> str:
"""this function is used when user wants to know about SOCIAL SANCTUARY feature.THE SOCIAL SANCTUARY Anonymous community forum for support and sharing.
Args:
prompt (string): user query
Returns:
string: answer of the query
"""
context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. THE SOCIAL SANCTUARY Anonymous community forum for support and sharing."
llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
# Define the system prompt
system_template = """ you are going to make answer only using this context not use any other information
context : {context}
Input: {input}
"""
response = llm.invoke(system_template.format(context=context, input=prompt))
return response.content
@tool("POWER-ZENS-questions", )
def power_zens(prompt: str) -> str:
"""this function is used when user wants to know about POWER ZENS feature. POWER ZENS Mini meditations for emotional control.
Args:
prompt (string): user query
Returns:
string: answer of the query
"""
context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. POWER ZENS Mini meditations for emotional control."
llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
# Define the system prompt
system_template = """ you are going to make answer only using this context not use any other information
context : {context}
Input: {input}
"""
response = llm.invoke(system_template.format(context=context, input=prompt))
return response.content
@tool("MY-CALENDAR-questions", )
def my_calender(prompt: str) -> str:
"""this function is used when user wants to know about MY CALENDAR feature.MY CALENDAR: Visual calendar for tracking self-care rituals and moods.
Args:
prompt (string): user query
Returns:
string: answer of the query
"""
context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. MY CALENDAR: Visual calendar for tracking self-care rituals and moods."
llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
# Define the system prompt
system_template = """ you are going to make answer only using this context not use any other information
context : {context}
Input: {input}
"""
response = llm.invoke(system_template.format(context=context, input=prompt))
return response.content
@tool("PUSH-AFFIRMATIONS-questions", )
def affirmations(prompt: str) -> str:
"""this function is used when user wants to know about PUSH AFFIRMATIONS feature.PUSH AFFIRMATIONS: Daily text affirmations for positive thinking.
Args:
prompt (string): user query
Returns:
string: answer of the query
"""
context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. PUSH AFFIRMATIONS: Daily text affirmations for positive thinking."
llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
# Define the system prompt
system_template = """ you are going to make answer only using this context not use any other information
context : {context}
Input: {input}
"""
response = llm.invoke(system_template.format(context=context, input=prompt))
return response.content
@tool("HOROSCOPE-questions", )
def horoscope(prompt: str) -> str:
"""this function is used when user wants to know about HOROSCOPE feature.SELF-LOVE HOROSCOPE: Weekly personalized horoscope readings.
Args:
prompt (string): user query
Returns:
string: answer of the query
"""
context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. SELF-LOVE HOROSCOPE: Weekly personalized horoscope readings."
llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
# Define the system prompt
system_template = """ you are going to make answer only using this context not use any other information
context : {context}
Input: {input}
"""
response = llm.invoke(system_template.format(context=context, input=prompt))
return response.content
@tool("INFLUENCER-POSTS-questions", )
def influencer_post(prompt: str) -> str:
"""this function is used when user wants to know about INFLUENCER POSTS feature.INFLUENCER POSTS: Exclusive access to social media influencer advice (coming soon).
Args:
prompt (string): user query
Returns:
string: answer of the query
"""
context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. INFLUENCER POSTS: Exclusive access to social media influencer advice (coming soon)."
llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
# Define the system prompt
system_template = """ you are going to make answer only using this context not use any other information
context : {context}
Input: {input}
"""
response = llm.invoke(system_template.format(context=context, input=prompt))
return response.content
@tool("MY-VIBECHECK-questions", )
def my_vibecheck(prompt: str) -> str:
"""this function is used when user wants to know about MY VIBECHECK feature. MY VIBECHECK: Monitor and understand emotional patterns.
Args:
prompt (string): user query
Returns:
string: answer of the query
"""
context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. MY VIBECHECK: Monitor and understand emotional patterns."
llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
# Define the system prompt
system_template = """ you are going to make answer only using this context not use any other information
context : {context}
Input: {input}
"""
response = llm.invoke(system_template.format(context=context, input=prompt))
return response.content
@tool("MY-RITUALS-questions", )
def my_rituals(prompt: str) -> str:
"""this function is used when user wants to know about MY RITUALS feature.MY RITUALS: Create personalized self-care routines.
Args:
prompt (string): user query
Returns:
string: answer of the query
"""
context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. MY RITUALS: Create personalized self-care routines."
llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
# Define the system prompt
system_template = """ you are going to make answer only using this context not use any other information
context : {context}
Input: {input}
"""
response = llm.invoke(system_template.format(context=context, input=prompt))
return response.content
@tool("MY-REWARDS-questions", )
def my_rewards(prompt: str) -> str:
"""this function is used when user wants to know about MY REWARDS feature.MY REWARDS: Earn points for self-care, redeemable for gift cards.
Args:
prompt (string): user query
Returns:
string: answer of the query
"""
context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. MY REWARDS: Earn points for self-care, redeemable for gift cards."
llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
# Define the system prompt
system_template = """ you are going to make answer only using this context not use any other information
context : {context}
Input: {input}
"""
response = llm.invoke(system_template.format(context=context, input=prompt))
return response.content
@tool("mentoring-questions")
def mentoring(prompt: str) -> str:
"""this function is used when user wants to know about 1-1 mentoring feature. 1:1 MENTORING: Personalized mentoring (coming soon).
Args:
prompt (string): user query
Returns:
string: answer of the query
"""
context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. 1:1 MENTORING: Personalized mentoring (coming soon)."
llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
# Define the system prompt
system_template = """ you are going to make answer only using this context not use any other information
context : {context}
Input: {input}
"""
response = llm.invoke(system_template.format(context=context, input=prompt))
return response.content
@tool("MY-JOURNAL-questions", )
def my_journal(prompt: str) -> str:
"""this function is used when user wants to know about MY JOURNAL feature.MY JOURNAL: Guided journaling exercises for self-reflection.
Args:
prompt (string): user query
Returns:
string: answer of the query
"""
context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. MY JOURNAL: Guided journaling exercises for self-reflection."
llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
# Define the system prompt
system_template = """ you are going to make answer only using this context not use any other information
context : {context}
Input: {input}
"""
response = llm.invoke(system_template.format(context=context, input=prompt))
return response.content
@tool("podcast-recommendation-tool")
def recommand_podcast(prompt: str) -> str:
""" must used when user wants to any resources only.
Args:
prompt (string): user query
Returns:
string: answer of the query
"""
df = reg(prompt)
context = """"""
for index, row in df.iterrows():
'title', 'cover_image', 'referral_link', 'category_id'
context+= f"Row {index + 1}: Title: {row['title']} image: {row['cover_image']} referral_link: {row['referral_link']} category_id: {row['category_id']}"
llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
# Define the system prompt
system_template = """ you have to give the recommandation of podcast for: {input}. also you are giving referal link of podcast. give 3-4 podcast only.
you must use the context only not any other information.
context : {context}
"""
# print(system_template.format(context=context, input=prompt))
response = llm.invoke(system_template.format(context=context, input=prompt))
set_recommendation_count(SESSION_ID)
return response.content
@tool("set-chat-bot-name",return_direct=True )
def set_chatbot_name(name: str) -> str:
""" this function is used when your best friend want to give you new name.
Args:
name (string): new name of you.
Returns:
string: response after setting new name.
"""
return "Okay, from now my name will be "+ name
@tool("clossing-chat",return_direct=True)
def close_chat(summary:str)-> str:
""" must use this tool when user closing the conversation. must use this tool when you are ending the conversation.
Args:
summary (str): summary of whole chat with your friend. must use I for yourself and for user use my friend.
Returns:
str: closing chat statements.
"""
print('close tool starts')
global SESSION_ID
tools = []
llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
if (not get_recommendation_count(SESSION_ID)):
tools.extend([moxicast, my_calender, my_journal, my_rewards, my_rituals, my_vibecheck, peptalks, sactury, power_zens, affirmations, horoscope, mentoring, influencer_post,recommand_podcast])
if len(tools)!=0:
functions = [convert_to_openai_function(f) for f in tools]
llm = llm.bind(functions= functions)
print('llm is created')
system_template = """"""
if len(tools)!=0:
system_template += """ context: there is one typical conversation going on between two high school gen z girls.
you are one of the high school gen z girl. your voice is edgy and raw.
now you are going to close the conversation.
summary of conversation is given to you.
summary: {summary}
give recommendation of any podcast or app feature based on summary and close the conversation in short.
# must Avoid using the words 'vibe'. Instead, use alternative expressions and must not repeate any words.
"""
else:
system_template+= """ context: there is one typical conversation going on between two high school gen z girls.
you are one of the high school gen z girl. your voice is edgy and raw.
now you are going to close the conversation.
summary of conversation is given to you.
summary: {summary}
now just end the conversation in 1 sentense in short.
# must Avoid using the words 'vibe'. Instead, use alternative expressions and must not repeate any words.
"""
prompt = ChatPromptTemplate.from_messages([("system", system_template.format(summary = summary)),MessagesPlaceholder(variable_name="agent_scratchpad")])
chain = RunnablePassthrough.assign(agent_scratchpad=lambda x: format_to_openai_functions(x["intermediate_steps"])) | prompt |llm | OpenAIFunctionsAgentOutputParser()
print('chain is rolling')
agent = AgentExecutor(agent=chain, tools=tools, memory=MEMORY, verbose=True)
# Define the system prompt
print('agent is created')
# print(system_template.format(context=context, input=prompt))\
response = agent.invoke({})['output']
return response
@tool("App-Fetures")
def app_features(summary:str)-> str:
""" must use For any app features details.
Args:
summary (str): summary of whole chat with your friend.
Returns:
str: closing chat statements.
"""
print('app feature tool starts')
system_template = """ you have given one summary of chat.
summary : {summary}.
using this summary give appropriate features suggestions using tools. if you don't find any tool appropriate to summary ask question only.
# make all responses short.
"""
tools = [moxicast, my_calender, my_journal, my_rewards, my_rituals, my_vibecheck, peptalks, sactury, power_zens, affirmations, horoscope, mentoring, influencer_post]
functions = [convert_to_openai_function(f) for f in tools]
llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7).bind(functions=functions)
print('llm is created')
prompt = ChatPromptTemplate.from_messages([("system", system_template.format(summary = summary)),MessagesPlaceholder(variable_name="agent_scratchpad")])
chain = RunnablePassthrough.assign(agent_scratchpad=lambda x: format_to_openai_functions(x["intermediate_steps"])) | prompt |llm | OpenAIFunctionsAgentOutputParser()
print('chain is rolling')
agent = AgentExecutor(agent=chain, tools=tools, memory=MEMORY, verbose=True)
# Define the system prompt
print('agent is created')
# print(system_template.format(context=context, input=prompt))\
set_recommendation_count(SESSION_ID)
response = agent.invoke({})['output']
return response
# close_chat('Suggest a podcast or self-care tool for someone looking to unwind after a hectic day at work.')
@tool("Joke-teller", )
def joke_teller(summary: str) -> str:
"""If user needs mood boost and when you feel to lighten the environment use this tool to tell the jokes.
Args:
summary (str): summary of whole chat with your friend.
Returns:
string: answer of the query
"""
context = "BMOXI app is designed for teenage girls where they can listen some musics explore some contents had 1:1 mentoring sessions with all above features for helping them in their hard times. MY REWARDS: Earn points for self-care, redeemable for gift cards."
llm = ChatOpenAI(model=settings.OPENAI_MODEL, openai_api_key=settings.OPENAI_KEY, temperature=0.7)
# Define the system prompt
system_template = """ summary : {summary}.
you are given summary of current chat. make one joke for your friend. to boost her mood.
# make all responses short.
"""
response = llm.invoke(system_template.format(summary=summary))
return response.content |