File size: 11,826 Bytes
57826b8 fd762a2 57826b8 8051ad6 57826b8 86e5481 57826b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
from copy import deepcopy
from importlib import reload
from itertools import product as cproduct
from itertools import combinations
from pylab import *
import itertools
import json
import math
import os
import pandas as pd
import random
import streamlit as st
import subprocess
st.set_page_config(layout='wide')
INPUT_XES="output/inputlog_temp.xes"
"""
# Configuration File fabric for
## GEDI: **G**enerating **E**vent **D**ata with **I**ntentional Features for Benchmarking Process Mining
"""
def double_switch(label_left, label_right, third_label=None, fourth_label=None):
if third_label==None and fourth_label==None:
# Create two columns for the labels and toggle switch
col0, col1, col2, col3, col4 = st.columns([2,1,1,1,2])
else:
# Create two columns for the labels and toggle switch
col0, col1, col2, col3, col4, col5, col6, col7, col8 = st.columns([1,1,1,1,1,1,1,1,1])
# Add labels to the columns
with col1:
st.write(label_left)
with col2:
# Create the toggle switch
toggle_option = st.toggle(" ",value=False,
key="toggle_switch_"+label_left,
)
with col3:
st.write(label_right)
if third_label is None and fourth_label is None:return toggle_option
else:
with col5:
st.write(third_label)
with col6:
# Create the toggle switch
toggle_option_2 = st.toggle(" ",value=False,
key="toggle_switch_"+third_label,
)
with col7:
st.write(fourth_label)
return toggle_option, toggle_option_2
def multi_button(labels):
cols = st.columns(len(labels))
activations = []
for col, label in zip(cols, labels):
activations.append(col.button(label))
return activations
def input_multicolumn(labels, default_values, n_cols=5):
result = {}
cols = st.columns(n_cols)
factor = math.ceil(len(labels)/n_cols)
extended = cols.copy()
for _ in range(factor):
extended.extend(cols)
for label, default_value, col in zip(labels, default_values, extended):
with col:
result[label] = col.text_input(label, default_value, key=f"input_"+label+'_'+str(default_value))
return result.values()
def split_list(input_list, n):
# Calculate the size of each chunk
k, m = divmod(len(input_list), n)
# Use list comprehension to create n sublists
return [input_list[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(n)]
def get_ranges_from_stats(stats, tuple_values):
col_for_row = ", ".join([f"x[\'{i}\'].astype(float)" for i in tuple_values])
stats['range'] = stats.apply(lambda x: tuple([eval(col_for_row)]), axis=1)
#tasks = eval(f"list(itertools.product({(parameters*n_para_obj)[:-2]}))")
result = [f"np.around({x}, 2)" for x in stats['range']]
result = ", ".join(result)
return result
def create_objectives_grid(df, objectives, n_para_obj=2, method="combinatorial"):
if method=="combinatorial":
sel_features = df.index.to_list()
parameters_o = "objectives, "
parameters = get_ranges_from_stats(df, sorted(objectives))
objectives = sorted(sel_features)
tasks = f"list(cproduct({parameters}))[0]"
elif method=="range-from-csv":
tasks = ""
for objective in objectives:
min_col, max_col, step_col = st.columns(3)
with min_col:
selcted_min = st.slider(objective+': min', min_value=float(df[objective].min()), max_value=float(df[objective].max()), value=df[objective].quantile(0.1), step=0.1, key=objective+"min")
with max_col:
selcted_max = st.slider('max', min_value=selcted_min, max_value=float(df[objective].max()), value=df[objective].quantile(0.9), step=0.1, key=objective+"max")
with step_col:
step_value = st.slider('step', min_value=float(df[objective].min()), max_value=float(df[objective].quantile(0.9)), value=df[objective].median()/(df[objective].min()+0.0001), step=0.01, key=objective+"step")
tasks += f"np.around(np.arange({selcted_min}, {selcted_max}+{step_value}, {step_value}),2), "
else :#method=="range-manual":
experitments = []
tasks=""
if objectives != None:
cross_labels = [feature[0]+': '+feature[1] for feature in list(cproduct(objectives,['min', 'max', 'step']))]
cross_values = [round(eval(str(combination[0])+combination[1]), 2) for combination in list(cproduct(list(df.values()), ['*1', '*2', '/3']))]
ranges = zip(objectives, split_list(list(input_multicolumn(cross_labels, cross_values, n_cols=3)), n_para_obj))
for objective, range_value in ranges:
selcted_min, selcted_max, step_value = range_value
tasks += f"np.around(np.arange({selcted_min}, {selcted_max}+{step_value}, {step_value}),2), "
#import pdb; pdb.set_trace()
cartesian_product = list(cproduct(*eval(tasks)))
experiments = [{key: value[idx] for idx, key in enumerate(objectives)} for value in cartesian_product]
return experiments
def set_generator_experiments(generator_params):
def handle_csv_file(grid_option):
uploaded_file = st.file_uploader("Pick a csv-file containing feature values for features:", type="csv")
if uploaded_file is not None:
df = pd.read_csv(uploaded_file)
sel_features = st.multiselect("Selected features", list(df.columns))
if sel_features:
df = df[sel_features]
return df, sel_features
return None, None
def handle_combinatorial(sel_features, stats, tuple_values):
triangular_option = double_switch("Square", "Triangular")
if triangular_option:
experiments = []
elements = sel_features
# List to store all combinations
all_combinations = [combinations(sel_features, r) for r in range(1, len(sel_features) + 1)]
all_combinations = [comb for sublist in all_combinations for comb in sublist]
# Print or use the result as needed
for comb in all_combinations:
sel_stats = stats.loc[sorted(list(comb))]
experiments += create_objectives_grid(sel_stats, tuple_values, n_para_obj=len(tuple_values), method="combinatorial")
else:
experiments = create_objectives_grid(stats, tuple_values, n_para_obj=len(tuple_values))
return experiments
def handle_grid_option(grid_option, df, sel_features):
if grid_option:
combinatorial = double_switch("Range", "Combinatorial")
if combinatorial:
add_quantile = st.slider('Add %-quantile', min_value=0.0, max_value=100.0, value=50.0, step=5.0)
stats = df.describe().transpose().sort_index()
stats[f"{int(add_quantile)}%"] = df.quantile(q=add_quantile / 100)
st.write(stats)
tuple_values = st.multiselect("Tuples including", list(stats.columns)[3:], default=['min', 'max'])
return handle_combinatorial(sel_features, stats, tuple_values)
else: # Range
return create_objectives_grid(df, sel_features, n_para_obj=len(sel_features), method="range-from-csv")
else: # Point
st.write(df)
return df.to_dict(orient='records')
def handle_manual_option(sel_features, grid_option):
if sel_features:
if grid_option:
return create_objectives_grid(generator_params['experiment'], sel_features, n_para_obj=len(sel_features), method="range-manual")
else:
experiment = {sel_feature: float(st.text_input(sel_feature, generator_params['experiment'][sel_feature])) for sel_feature in sel_features}
return [experiment]
return []
grid_option, csv_option = double_switch("Point-", "Grid-based", third_label="Manual", fourth_label="From CSV")
if csv_option:
df, sel_features = handle_csv_file(grid_option)
if df is not None and sel_features is not None:
experiments = handle_grid_option(grid_option, df, sel_features)
else:
experiments = []
else: # Manual
sel_features = st.multiselect("Selected features", list(generator_params['experiment'].keys()))
experiments = handle_manual_option(sel_features, grid_option)
generator_params['experiment'] = experiments
st.write(f"...result in {len(generator_params['experiment'])} experiment(s)")
"""
#### Configuration space
"""
updated_values = input_multicolumn(generator_params['config_space'].keys(), generator_params['config_space'].values())
for key, new_value in zip(generator_params['config_space'].keys(), updated_values):
generator_params['config_space'][key] = eval(new_value)
generator_params['n_trials'] = int(st.text_input('n_trials', generator_params['n_trials']))
return generator_params
if __name__ == '__main__':
config_layout = json.load(open("config_files/config_layout.json"))
type(config_layout)
step_candidates = ["instance_augmentation","event_logs_generation","feature_extraction","benchmark_test"]
pipeline_steps = st.multiselect(
"Choose pipeline step",
step_candidates,
[]
)
step_configs = []
set_col, view_col = st.columns([3, 2])
for pipeline_step in pipeline_steps:
step_config = [d for d in config_layout if d['pipeline_step'] == pipeline_step][0]
with set_col:
st.header(pipeline_step)
for step_key in step_config.keys():
if step_key == "generator_params":
st.subheader("Set-up experiments")
step_config[step_key] = set_generator_experiments(step_config[step_key])
elif step_key == "feature_params":
layout_features = list(step_config[step_key]['feature_set'])
step_config[step_key]["feature_set"] = st.multiselect(
"features to extract",
layout_features)
elif step_key != "pipeline_step":
step_config[step_key] = st.text_input(step_key, step_config[step_key])
with view_col:
st.write(step_config)
step_configs.append(step_config)
config_file = json.dumps(step_configs, indent=4)
output_path = st.text_input("Output file path", "config_files/experiment_config.json")
os.makedirs(os.path.dirname(output_path), exist_ok=True)
save_labels = ["Save config file", "Save and run config_file"]
save_labels = ["Save configuration file"]
#create_button, create_run_button = multi_button(save_labels)
create_button = multi_button(save_labels)
# ToDo: Bug: automatically updates the experiment_config.json file even without pressing the save button
if create_button: # or create_run_button:
with open(output_path, "w") as f:
f.write(config_file)
st.write("Saved configuration in ", output_path, ". Run command:")
#if create_run_button:
if True:
var = f"python -W ignore main.py -a {output_path}"
st.code(var, language='bash')
if False: #FIXME: Command fails when using multiprocessing
command = var.split()
# Run the command
result = subprocess.run(command, capture_output=True, text=True)
if len(result.stderr)==0:
st.write(result.stdout)
else:
st.write("ERROR: ", result.stderr)
|