Spaces:
Sleeping
Sleeping
File size: 6,050 Bytes
aefc9ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# Copyright (c) Guangsheng Bao.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
import argparse
import json
from data_builder import load_data
from model import load_tokenizer, load_model
from metrics import get_roc_metrics, get_precision_recall_metrics
def get_likelihood(logits, labels):
assert logits.shape[0] == 1
assert labels.shape[0] == 1
logits = logits.view(-1, logits.shape[-1])
labels = labels.view(-1)
log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
log_likelihood = log_probs.gather(dim=-1, index=labels.unsqueeze(-1)).squeeze(-1)
return log_likelihood.mean().item()
def get_rank(logits, labels):
assert logits.shape[0] == 1
assert labels.shape[0] == 1
# get rank of each label token in the model's likelihood ordering
matches = (logits.argsort(-1, descending=True) == labels.unsqueeze(-1)).nonzero()
assert matches.shape[1] == 3, f"Expected 3 dimensions in matches tensor, got {matches.shape}"
ranks, timesteps = matches[:, -1], matches[:, -2]
# make sure we got exactly one match for each timestep in the sequence
assert (timesteps == torch.arange(len(timesteps)).to(timesteps.device)).all(), "Expected one match per timestep"
ranks = ranks.float() + 1 # convert to 1-indexed rank
return -ranks.mean().item()
def get_logrank(logits, labels):
assert logits.shape[0] == 1
assert labels.shape[0] == 1
# get rank of each label token in the model's likelihood ordering
matches = (logits.argsort(-1, descending=True) == labels.unsqueeze(-1)).nonzero()
assert matches.shape[1] == 3, f"Expected 3 dimensions in matches tensor, got {matches.shape}"
ranks, timesteps = matches[:, -1], matches[:, -2]
# make sure we got exactly one match for each timestep in the sequence
assert (timesteps == torch.arange(len(timesteps)).to(timesteps.device)).all(), "Expected one match per timestep"
ranks = ranks.float() + 1 # convert to 1-indexed rank
ranks = torch.log(ranks)
return -ranks.mean().item()
def get_entropy(logits, labels):
assert logits.shape[0] == 1
assert labels.shape[0] == 1
entropy = F.softmax(logits, dim=-1) * F.log_softmax(logits, dim=-1)
entropy = -entropy.sum(-1)
return entropy.mean().item()
def experiment(args):
# load model
scoring_tokenizer = load_tokenizer(args.scoring_model_name, args.dataset, args.cache_dir)
scoring_model = load_model(args.scoring_model_name, args.device, args.cache_dir)
scoring_model.eval()
# load data
data = load_data(args.dataset_file)
n_samples = len(data["sampled"])
# eval criterions
criterion_fns = {'likelihood': get_likelihood,
'rank': get_rank,
'logrank': get_logrank,
'entropy': get_entropy}
for name in criterion_fns:
criterion_fn = criterion_fns[name]
torch.manual_seed(args.seed)
np.random.seed(args.seed)
eval_results = []
for idx in tqdm.tqdm(range(n_samples), desc=f"Computing {name} criterion"):
original_text = data["original"][idx]
sampled_text = data["sampled"][idx]
# original text
tokenized = scoring_tokenizer(original_text, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device)
labels = tokenized.input_ids[:, 1:]
with torch.no_grad():
logits = scoring_model(**tokenized).logits[:, :-1]
original_crit = criterion_fn(logits, labels)
# sampled text
tokenized = scoring_tokenizer(sampled_text, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device)
labels = tokenized.input_ids[:, 1:]
with torch.no_grad():
logits = scoring_model(**tokenized).logits[:, :-1]
sampled_crit = criterion_fn(logits, labels)
# result
eval_results.append({"original": original_text,
"original_crit": original_crit,
"sampled": sampled_text,
"sampled_crit": sampled_crit})
# compute prediction scores for real/sampled passages
predictions = {'real': [x["original_crit"] for x in eval_results],
'samples': [x["sampled_crit"] for x in eval_results]}
fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples'])
p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples'])
print(f"Criterion {name}_threshold ROC AUC: {roc_auc:.4f}, PR AUC: {pr_auc:.4f}")
# log results
results_file = f'{args.output_file}.{name}.json'
results = { 'name': f'{name}_threshold',
'info': {'n_samples': n_samples},
'predictions': predictions,
'raw_results': eval_results,
'metrics': {'roc_auc': roc_auc, 'fpr': fpr, 'tpr': tpr},
'pr_metrics': {'pr_auc': pr_auc, 'precision': p, 'recall': r},
'loss': 1 - pr_auc}
with open(results_file, 'w') as fout:
json.dump(results, fout)
print(f'Results written into {results_file}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--output_file', type=str, default="./exp_test/results/xsum_gpt2")
parser.add_argument('--dataset', type=str, default="xsum")
parser.add_argument('--dataset_file', type=str, default="./exp_test/data/xsum_gpt2")
parser.add_argument('--scoring_model_name', type=str, default="gpt2")
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--device', type=str, default="cuda")
parser.add_argument('--cache_dir', type=str, default="../cache")
args = parser.parse_args()
experiment(args)
|