File size: 2,443 Bytes
c93d9e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
# 1.
import gradio as gr
import os
import torch
from model import create_effnetb2_model
from timeit import default_timer as timer
from typing import Tuple, Dict
# Setup class names
with open("class_names.txt", "r") as f:
class_names = [food.strip('\n') for food in f.readlines()]
# 2.
effnetb2_food101, effnetb2_transforms = create_effnetb2_model(num_classes = 101)
# Load saved weights
effnetb2_food101.load_state_dict(torch.load("models/state_dict__effnetb2_food101_20_percent.pth",
map_location = torch.device('cpu')))
# 3.
def predict(img) -> Tuple[Dict, float]:
# Start a timer
start_time = timer()
# Transform the input image for use with EffNetB2
img = effnetb2_transforms(img).unsqueeze(0)
# Put the model into eval mode, make prediction
effnetb2_food101.eval()
with torch.inference_mode():
# Pass transformed image through the model and turn the prediction logits into probabilities
pred_probs = torch.softmax(effnetb2_food101(img), dim = 1)
# Create a prediction label and prediction probability dictionary
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
# Calculate pre time
end_time = timer()
pred_time = round(end_time - start_time, 4)
# Return pred dict and pred time
return pred_labels_and_probs, pred_time
# 4.
title = 'FoodIdentifier Big (a little) π£ππ₯©'
description = "An EfficientNetB2 feature extractor computer vision model to classify images as pizza, sushi or steak"
article = " anything I want for the description of the description above π€ͺ"
# Create example list
# Get example filepaths in a list of lists
example_list = [["examples/" + example] for example in os.listdir("examples")]
# Create the Gradio demo
demo = gr.Interface(fn = predict, # maps input to output
inputs = gr.Image(type = 'pil'),
outputs = [gr.Label(num_top_classes = 5, label = "Predictions"),
gr.Number(label = "Prediction time (s)")],
examples = example_list,
title = title,
description = description,
article = article
)
# Launch the demo
demo.launch(debug = False, # print errors locally?
share = True) # generate a publically shareable URL
|