File size: 1,152 Bytes
caeeddb
 
 
 
 
 
 
 
 
 
 
 
 
c508ef4
caeeddb
1dad98a
caeeddb
 
 
c508ef4
 
 
 
caeeddb
 
c508ef4
caeeddb
c508ef4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import gradio as gr
from transformers import pipeline
import pandas as pd

def analyze(text):
    classifier = pipeline("text-classification", model="ayoubkirouane/BERT-Emotions-Classifier", return_all_scores=True)
    results = classifier(text)
    
    # Extract and format the emotion labels and scores
    formatted_results = [{"Emotion": item['label'], "Score": item['score']} for item in results[0]]
    
    return pd.DataFrame(formatted_results)

examples = ["Walking alone in the dark forest, he couldn't shake the feeling of fear creeping over him.",
            "Winning the championship brought tears of joy to the entire team."]

# Create a Gradio interface
iface = gr.Interface(fn=analyze, 
                     inputs="text", 
                     outputs=gr.Dataframe(type="pandas"),
                     allow_flagging=False,
                     examples=examples,
                     title="BERT Emotion Analysis App",
                     description="Enter a piece of text, and this app will analyze its emotional content using a BERT-Emotions-Classifier model.",
                     )

# Launch the app
iface.launch(debug=True)