Spaces:
Sleeping
Sleeping
File size: 1,273 Bytes
b23dced 1b6a720 9615c66 1b6a720 cefbbca 9a8b099 b23dced 3a15f10 b23dced 9de6f34 7b8d7d3 9de6f34 b23dced 2973318 0dc667c b23dced 0dc667c 1047b7a de5a93f 0dc667c 876676b 2125690 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import streamlit as st
import torch
import torch.nn.functional as F
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from datasets import load_dataset
import numpy as np
import pandas as pd
st.title('Can I Patent This?')
# steamlit form
option = st.selectbox(
'How would you like to be contacted?',
('p1', 'p2', 'p3'))
st.write(option)
form = st.form(key='sentiment-form')
user_input = form.text_area(label = 'Enter your text', value = "I love steamlit and hugging face!")
submit = form.form_submit_button('Submit')
model_name = "ayethuzar/tuned-for-patentability"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
test = [user_input]
if submit:
batch = tokenizer(test, padding = True, truncation = True, max_length = 512, return_tensors = "pt")
with torch.no_grad():
outputs = model(**batch)
#st.write(outputs)
predictions = F.softmax(outputs.logits, dim = 1)
result = "Patentability Score: " + str(predictions.numpy()[0][1])
html_str = f"""<style>p.a {{font: bold {28}px Courier;color:#1D5D9B;}}</style><p class="a">{result}</p>"""
st.markdown(html_str, unsafe_allow_html=True)
|