Spaces:
Running
Running
File size: 2,268 Bytes
e674a51 1e6822b e674a51 555f172 3e69d5d 984fbb4 555f172 e674a51 49ecfa7 984fbb4 555f172 9f453e8 5bce228 49ecfa7 e674a51 153d27f 984fbb4 70872ee 6b3b146 e684352 e674a51 692215d e674a51 984fbb4 692215d 9f453e8 e674a51 5bce228 49ecfa7 e674a51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import gradio as gr
from transformers import pipeline
models = {
"DistilGPT2 SD": "FredZhang7/distilgpt2-stable-diffusion",
"Llama-SmolTalk-3.2-1B": "prithivMLmods/Llama-SmolTalk-3.2-1B-Instruct",
"Dolphin-Phi 3 2.9.2": "cognitivecomputations/dolphin-2.9.2-Phi-3-Medium",
"EXAONE 3.5 2.4B": "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct",
"Granite 3.3 2B": "ibm-granite/granite-3.3-2b-instruct"
}
def respond(
message,
_: list[tuple[str, str]],
system_prompt: str,
model: str,
max_new_tokens: int,
temperature: float,
top_p: float,
top_k: int
):
pipe = pipeline("text-generation", model=model)
yield pipe(
[
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": message
}
],
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k
)[0]['generated_text'][-1]
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
title="Prompt Enhancer Test",
type="messages",
additional_inputs=[
gr.Textbox(value="When the user provides two sentences, return a longer sentence that fuses the two together with a natural motion in between.", lines=5, show_label=True, label="System prompt"),
gr.Radio(list(models.items()), value="FredZhang7/distilgpt2-stable-diffusion", type="value", label="Model"),
# gr.Textbox(value="Enhance the provided text so that it is more vibrant and detailed.", label="System prompt"),
gr.Slider(minimum=8, maximum=128, value=64, step=8, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=10,
maximum=100,
value=30,
step=5,
label="Top-k",
),
],
)
if __name__ == "__main__":
demo.launch()
|