File size: 24,293 Bytes
338d95d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
"""
CompI Data Processing Utilities
This module provides utilities for Phase 2.B: Data/Logic Input Integration
- CSV data analysis and processing
- Mathematical formula evaluation
- Data-to-text conversion (poetic descriptions)
- Data visualization generation
- Statistical analysis and pattern detection
"""
import os
import io
import ast
import math
import numpy as np
import pandas as pd
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend for Streamlit
import matplotlib.pyplot as plt
import seaborn as sns
from typing import Dict, List, Optional, Tuple, Union, Any
from dataclasses import dataclass
from PIL import Image
import logging
logger = logging.getLogger(__name__)
@dataclass
class DataFeatures:
"""Container for extracted data features and statistics"""
# Basic properties
shape: Tuple[int, int]
columns: List[str]
numeric_columns: List[str]
data_types: Dict[str, str]
# Statistical features
means: Dict[str, float]
medians: Dict[str, float]
stds: Dict[str, float]
mins: Dict[str, float]
maxs: Dict[str, float]
ranges: Dict[str, float]
# Pattern features
trends: Dict[str, str] # 'increasing', 'decreasing', 'stable', 'volatile'
correlations: Dict[str, float] # strongest correlations
seasonality: Dict[str, bool] # detected patterns
# Derived insights
complexity_score: float # 0-1 measure of data complexity
variability_score: float # 0-1 measure of data variability
pattern_strength: float # 0-1 measure of detectable patterns
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for JSON serialization"""
return {
'shape': self.shape,
'columns': self.columns,
'numeric_columns': self.numeric_columns,
'data_types': self.data_types,
'means': self.means,
'medians': self.medians,
'stds': self.stds,
'mins': self.mins,
'maxs': self.maxs,
'ranges': self.ranges,
'trends': self.trends,
'correlations': self.correlations,
'seasonality': self.seasonality,
'complexity_score': self.complexity_score,
'variability_score': self.variability_score,
'pattern_strength': self.pattern_strength
}
class DataProcessor:
"""Core data processing and analysis functionality"""
def __init__(self):
"""Initialize the data processor"""
self.safe_functions = {
# Math functions
'abs': abs, 'round': round, 'min': min, 'max': max,
'sum': sum, 'len': len, 'pow': pow,
# NumPy functions
'np': np, 'numpy': np,
'sin': np.sin, 'cos': np.cos, 'tan': np.tan,
'exp': np.exp, 'log': np.log, 'sqrt': np.sqrt,
'pi': np.pi, 'e': np.e,
# Math module functions
'math': math,
# Restricted builtins
'__builtins__': {}
}
def analyze_csv_data(self, df: pd.DataFrame) -> DataFeatures:
"""
Comprehensive analysis of CSV data
Args:
df: Input DataFrame
Returns:
DataFeatures object with extracted insights
"""
logger.info(f"Analyzing CSV data with shape {df.shape}")
# Basic properties
shape = df.shape
columns = df.columns.tolist()
numeric_df = df.select_dtypes(include=[np.number])
numeric_columns = numeric_df.columns.tolist()
data_types = {col: str(df[col].dtype) for col in columns}
# Statistical features
means = {col: float(numeric_df[col].mean()) for col in numeric_columns}
medians = {col: float(numeric_df[col].median()) for col in numeric_columns}
stds = {col: float(numeric_df[col].std()) for col in numeric_columns}
mins = {col: float(numeric_df[col].min()) for col in numeric_columns}
maxs = {col: float(numeric_df[col].max()) for col in numeric_columns}
ranges = {col: maxs[col] - mins[col] for col in numeric_columns}
# Pattern analysis
trends = self._analyze_trends(numeric_df)
correlations = self._find_strongest_correlations(numeric_df)
seasonality = self._detect_seasonality(numeric_df)
# Derived scores
complexity_score = self._calculate_complexity_score(numeric_df)
variability_score = self._calculate_variability_score(stds, ranges)
pattern_strength = self._calculate_pattern_strength(trends, correlations)
return DataFeatures(
shape=shape,
columns=columns,
numeric_columns=numeric_columns,
data_types=data_types,
means=means,
medians=medians,
stds=stds,
mins=mins,
maxs=maxs,
ranges=ranges,
trends=trends,
correlations=correlations,
seasonality=seasonality,
complexity_score=complexity_score,
variability_score=variability_score,
pattern_strength=pattern_strength
)
def evaluate_formula(self, formula: str, num_points: int = 100) -> Tuple[np.ndarray, Dict[str, Any]]:
"""
Safely evaluate mathematical formula
Args:
formula: Mathematical expression (Python/NumPy syntax)
num_points: Number of points to generate
Returns:
Tuple of (result_array, metadata)
"""
logger.info(f"Evaluating formula: {formula}")
try:
# Create default x values if not specified in formula
if 'x' in formula and 'linspace' not in formula and 'arange' not in formula:
# Add default x range if x is used but not defined
x = np.linspace(0, 10, num_points)
self.safe_functions['x'] = x
# Evaluate the formula
result = eval(formula, self.safe_functions)
# Ensure result is a numpy array
if not isinstance(result, np.ndarray):
if isinstance(result, (list, tuple)):
result = np.array(result)
else:
# Single value - create array
result = np.full(num_points, result)
# Analyze the result
metadata = {
'length': len(result),
'min': float(np.min(result)),
'max': float(np.max(result)),
'mean': float(np.mean(result)),
'std': float(np.std(result)),
'range': float(np.max(result) - np.min(result)),
'formula': formula,
'has_pattern': self._detect_mathematical_pattern(result)
}
return result, metadata
except Exception as e:
logger.error(f"Formula evaluation failed: {e}")
raise ValueError(f"Invalid formula: {e}")
def _analyze_trends(self, df: pd.DataFrame) -> Dict[str, str]:
"""Analyze trends in numeric columns"""
trends = {}
for col in df.columns:
values = df[col].dropna()
if len(values) < 3:
trends[col] = 'insufficient_data'
continue
# Calculate trend using linear regression slope
x = np.arange(len(values))
slope = np.polyfit(x, values, 1)[0]
std_val = values.std()
if abs(slope) < std_val * 0.1:
trends[col] = 'stable'
elif std_val > values.mean() * 0.5:
trends[col] = 'volatile'
elif slope > 0:
trends[col] = 'increasing'
else:
trends[col] = 'decreasing'
return trends
def _find_strongest_correlations(self, df: pd.DataFrame) -> Dict[str, float]:
"""Find strongest correlations between columns"""
if len(df.columns) < 2:
return {}
corr_matrix = df.corr()
correlations = {}
for i, col1 in enumerate(df.columns):
for j, col2 in enumerate(df.columns):
if i < j: # Avoid duplicates and self-correlation
corr_val = corr_matrix.loc[col1, col2]
if not np.isnan(corr_val):
correlations[f"{col1}_vs_{col2}"] = float(corr_val)
# Return top 3 strongest correlations
sorted_corr = sorted(correlations.items(), key=lambda x: abs(x[1]), reverse=True)
return dict(sorted_corr[:3])
def _detect_seasonality(self, df: pd.DataFrame) -> Dict[str, bool]:
"""Simple seasonality detection"""
seasonality = {}
for col in df.columns:
values = df[col].dropna()
if len(values) < 12: # Need at least 12 points for seasonality
seasonality[col] = False
continue
# Simple autocorrelation check
try:
autocorr = np.corrcoef(values[:-1], values[1:])[0, 1]
seasonality[col] = not np.isnan(autocorr) and abs(autocorr) > 0.3
except:
seasonality[col] = False
return seasonality
def _calculate_complexity_score(self, df: pd.DataFrame) -> float:
"""Calculate data complexity score (0-1)"""
if df.empty:
return 0.0
# Factors: number of columns, data types variety, missing values
num_cols = len(df.columns)
col_score = min(num_cols / 10, 1.0) # Normalize to 0-1
# Missing data complexity
missing_ratio = df.isnull().sum().sum() / (df.shape[0] * df.shape[1])
missing_score = min(missing_ratio * 2, 1.0)
return (col_score + missing_score) / 2
def _calculate_variability_score(self, stds: Dict[str, float], ranges: Dict[str, float]) -> float:
"""Calculate data variability score (0-1)"""
if not stds:
return 0.0
# Normalize standard deviations by their ranges
normalized_vars = []
for col in stds:
if ranges[col] > 0:
normalized_vars.append(stds[col] / ranges[col])
if not normalized_vars:
return 0.0
return min(np.mean(normalized_vars) * 2, 1.0)
def _calculate_pattern_strength(self, trends: Dict[str, str], correlations: Dict[str, float]) -> float:
"""Calculate pattern strength score (0-1)"""
pattern_score = 0.0
# Trend strength
trend_patterns = sum(1 for trend in trends.values() if trend in ['increasing', 'decreasing'])
trend_score = min(trend_patterns / max(len(trends), 1), 1.0)
# Correlation strength
if correlations:
max_corr = max(abs(corr) for corr in correlations.values())
corr_score = max_corr
else:
corr_score = 0.0
return (trend_score + corr_score) / 2
def _detect_mathematical_pattern(self, data: np.ndarray) -> bool:
"""Detect if mathematical data has recognizable patterns"""
if len(data) < 10:
return False
# Check for periodicity using autocorrelation
try:
# Simple pattern detection
autocorr = np.corrcoef(data[:-1], data[1:])[0, 1]
return not np.isnan(autocorr) and abs(autocorr) > 0.5
except:
return False
class DataToTextConverter:
"""Convert data patterns into poetic/narrative text descriptions"""
def __init__(self):
"""Initialize the converter with descriptive vocabularies"""
self.trend_descriptions = {
'increasing': ['ascending', 'rising', 'climbing', 'growing', 'soaring'],
'decreasing': ['descending', 'falling', 'declining', 'diminishing', 'fading'],
'stable': ['steady', 'constant', 'balanced', 'harmonious', 'peaceful'],
'volatile': ['chaotic', 'turbulent', 'dynamic', 'energetic', 'wild']
}
self.pattern_adjectives = {
'high_complexity': ['intricate', 'complex', 'sophisticated', 'elaborate'],
'low_complexity': ['simple', 'pure', 'minimal', 'clean'],
'high_variability': ['diverse', 'varied', 'rich', 'multifaceted'],
'low_variability': ['consistent', 'uniform', 'regular', 'predictable'],
'strong_patterns': ['rhythmic', 'structured', 'organized', 'patterned'],
'weak_patterns': ['random', 'scattered', 'free-flowing', 'organic']
}
self.artistic_metaphors = [
'like brushstrokes on a canvas',
'resembling musical notes in harmony',
'flowing like water through landscapes',
'dancing with mathematical precision',
'weaving patterns of light and shadow',
'creating symphonies of numbers',
'painting stories with data points',
'sculpting meaning from statistics'
]
def generate_poetic_description(self, features: DataFeatures) -> str:
"""
Generate poetic description from data features
Args:
features: DataFeatures object
Returns:
Poetic text description
"""
descriptions = []
# Basic data description
descriptions.append(f"A tapestry woven from {features.shape[0]} data points across {features.shape[1]} dimensions")
# Trend descriptions
trend_desc = self._describe_trends(features.trends)
if trend_desc:
descriptions.append(trend_desc)
# Variability description
var_desc = self._describe_variability(features.variability_score)
if var_desc:
descriptions.append(var_desc)
# Pattern description
pattern_desc = self._describe_patterns(features.pattern_strength, features.correlations)
if pattern_desc:
descriptions.append(pattern_desc)
# Add artistic metaphor
import random
metaphor = random.choice(self.artistic_metaphors)
descriptions.append(f"The data flows {metaphor}")
return '. '.join(descriptions) + '.'
def generate_formula_description(self, formula: str, metadata: Dict[str, Any]) -> str:
"""
Generate poetic description for mathematical formula
Args:
formula: Original formula
metadata: Formula evaluation metadata
Returns:
Poetic text description
"""
descriptions = []
# Formula introduction
descriptions.append(f"Mathematical harmony emerges from the expression: {formula}")
# Range description
range_val = metadata['range']
if range_val > 10:
descriptions.append("The function soars across vast numerical landscapes")
elif range_val > 1:
descriptions.append("Values dance within moderate bounds")
else:
descriptions.append("Numbers whisper in gentle, subtle variations")
# Pattern description
if metadata['has_pattern']:
descriptions.append("Revealing intricate patterns that speak to the soul")
else:
descriptions.append("Creating unique, unrepeatable mathematical poetry")
# Add artistic metaphor
import random
metaphor = random.choice(self.artistic_metaphors)
descriptions.append(f"Each calculation {metaphor}")
return '. '.join(descriptions) + '.'
def _describe_trends(self, trends: Dict[str, str]) -> str:
"""Describe overall trends in the data"""
if not trends:
return ""
trend_counts = {}
for trend in trends.values():
trend_counts[trend] = trend_counts.get(trend, 0) + 1
dominant_trend = max(trend_counts, key=trend_counts.get)
if dominant_trend in self.trend_descriptions:
import random
adj = random.choice(self.trend_descriptions[dominant_trend])
return f"The data reveals {adj} patterns throughout its structure"
return ""
def _describe_variability(self, variability_score: float) -> str:
"""Describe data variability"""
import random
if variability_score > 0.7:
adj = random.choice(self.pattern_adjectives['high_variability'])
return f"With {adj} expressions of numerical diversity"
elif variability_score < 0.3:
adj = random.choice(self.pattern_adjectives['low_variability'])
return f"Maintaining {adj} elegance in its values"
else:
return "Balancing consistency with creative variation"
def _describe_patterns(self, pattern_strength: float, correlations: Dict[str, float]) -> str:
"""Describe pattern strength and correlations"""
import random
if pattern_strength > 0.6:
adj = random.choice(self.pattern_adjectives['strong_patterns'])
return f"Displaying {adj} relationships between its elements"
elif pattern_strength < 0.3:
adj = random.choice(self.pattern_adjectives['weak_patterns'])
return f"Embracing {adj} freedom in its numerical expression"
else:
return "Weaving subtle connections throughout its numerical fabric"
class DataVisualizer:
"""Create visualizations from data for artistic conditioning"""
def __init__(self, style: str = 'artistic'):
"""
Initialize visualizer
Args:
style: Visualization style ('artistic', 'scientific', 'minimal')
"""
self.style = style
self.color_palettes = {
'artistic': ['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7'],
'scientific': ['#2E86AB', '#A23B72', '#F18F01', '#C73E1D', '#592E83'],
'minimal': ['#2C3E50', '#34495E', '#7F8C8D', '#95A5A6', '#BDC3C7']
}
def create_data_visualization(self, df: pd.DataFrame, features: DataFeatures) -> Image.Image:
"""
Create artistic visualization from DataFrame
Args:
df: Input DataFrame
features: DataFeatures object
Returns:
PIL Image of the visualization
"""
plt.style.use('default')
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
fig.suptitle('Data Pattern Visualization', fontsize=16, fontweight='bold')
numeric_df = df.select_dtypes(include=[np.number])
colors = self.color_palettes[self.style]
# Plot 1: Line plot of first few columns
ax1 = axes[0, 0]
for i, col in enumerate(numeric_df.columns[:3]):
ax1.plot(numeric_df[col], color=colors[i % len(colors)],
linewidth=2, alpha=0.8, label=col)
ax1.set_title('Data Trends', fontweight='bold')
ax1.legend()
ax1.grid(True, alpha=0.3)
# Plot 2: Distribution/histogram
ax2 = axes[0, 1]
if len(numeric_df.columns) > 0:
col = numeric_df.columns[0]
ax2.hist(numeric_df[col].dropna(), bins=20, color=colors[0],
alpha=0.7, edgecolor='black')
ax2.set_title(f'Distribution: {col}', fontweight='bold')
ax2.grid(True, alpha=0.3)
# Plot 3: Correlation heatmap (if multiple columns)
ax3 = axes[1, 0]
if len(numeric_df.columns) > 1:
corr_matrix = numeric_df.corr()
im = ax3.imshow(corr_matrix, cmap='RdBu_r', aspect='auto', vmin=-1, vmax=1)
ax3.set_xticks(range(len(corr_matrix.columns)))
ax3.set_yticks(range(len(corr_matrix.columns)))
ax3.set_xticklabels(corr_matrix.columns, rotation=45)
ax3.set_yticklabels(corr_matrix.columns)
ax3.set_title('Correlations', fontweight='bold')
plt.colorbar(im, ax=ax3, shrink=0.8)
else:
ax3.text(0.5, 0.5, 'Single Column\nNo Correlations',
ha='center', va='center', transform=ax3.transAxes)
ax3.set_title('Correlations', fontweight='bold')
# Plot 4: Summary statistics
ax4 = axes[1, 1]
if len(numeric_df.columns) > 0:
stats_data = [features.means[col] for col in numeric_df.columns[:5]]
bars = ax4.bar(range(len(stats_data)), stats_data, color=colors[:len(stats_data)])
ax4.set_title('Mean Values', fontweight='bold')
ax4.set_xticks(range(len(stats_data)))
ax4.set_xticklabels([col[:8] for col in numeric_df.columns[:5]], rotation=45)
ax4.grid(True, alpha=0.3)
plt.tight_layout()
# Convert to PIL Image
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
plt.close()
buf.seek(0)
return Image.open(buf)
def create_formula_visualization(self, data: np.ndarray, formula: str, metadata: Dict[str, Any]) -> Image.Image:
"""
Create artistic visualization from formula result
Args:
data: Formula result array
formula: Original formula
metadata: Formula metadata
Returns:
PIL Image of the visualization
"""
try:
logger.info(f"Creating visualization for formula: {formula}")
logger.info(f"Data shape: {data.shape}, Data range: [{np.min(data):.3f}, {np.max(data):.3f}]")
plt.style.use('default')
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
fig.suptitle(f'Mathematical Pattern: {formula}', fontsize=14, fontweight='bold')
colors = self.color_palettes[self.style]
x = np.arange(len(data))
# Plot 1: Main function plot
ax1 = axes[0, 0]
ax1.plot(x, data, color=colors[0], linewidth=3, alpha=0.8)
ax1.fill_between(x, data, alpha=0.3, color=colors[0])
ax1.set_title('Function Values', fontweight='bold')
ax1.grid(True, alpha=0.3)
# Plot 2: Derivative approximation
ax2 = axes[0, 1]
if len(data) > 1:
derivative = np.gradient(data)
ax2.plot(x, derivative, color=colors[1], linewidth=2)
ax2.set_title('Rate of Change', fontweight='bold')
ax2.grid(True, alpha=0.3)
# Plot 3: Distribution
ax3 = axes[1, 0]
ax3.hist(data, bins=30, color=colors[2], alpha=0.7, edgecolor='black')
ax3.set_title('Value Distribution', fontweight='bold')
ax3.grid(True, alpha=0.3)
# Plot 4: Phase space (if applicable)
ax4 = axes[1, 1]
if len(data) > 1:
ax4.scatter(data[:-1], data[1:], c=x[:-1], cmap='viridis', alpha=0.6)
ax4.set_xlabel('f(t)')
ax4.set_ylabel('f(t+1)')
ax4.set_title('Phase Space', fontweight='bold')
ax4.grid(True, alpha=0.3)
plt.tight_layout()
# Convert to PIL Image
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
plt.close()
buf.seek(0)
image = Image.open(buf)
logger.info(f"Successfully created visualization image: {image.size}")
return image
except Exception as e:
logger.error(f"Error creating formula visualization: {e}")
plt.close('all') # Clean up any open figures
# Return a simple error image
fig, ax = plt.subplots(figsize=(8, 6))
ax.text(0.5, 0.5, f'Visualization Error:\n{str(e)}',
ha='center', va='center', fontsize=12,
bbox=dict(boxstyle="round,pad=0.3", facecolor="lightcoral"))
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.axis('off')
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
plt.close()
buf.seek(0)
return Image.open(buf)
|