File size: 7,634 Bytes
3126b1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import tensorflow as tf
import tensorflow_addons as tfa

H_AXIS = -3
W_AXIS = -2

@tf.keras.utils.register_keras_serializable(package="gcvit")
class Mlp(tf.keras.layers.Layer):
    def __init__(self, hidden_features=None, out_features=None, act_layer='gelu', dropout=0., **kwargs):
        super().__init__(**kwargs)
        self.hidden_features = hidden_features
        self.out_features = out_features
        self.act_layer = act_layer
        self.dropout = dropout

    def build(self, input_shape):
        self.in_features = input_shape[-1]
        self.hidden_features = self.hidden_features or self.in_features
        self.out_features = self.out_features or self.in_features
        self.fc1 = tf.keras.layers.Dense(self.hidden_features, name="fc1")
        self.act = tf.keras.layers.Activation(self.act_layer, name="act")
        self.fc2 = tf.keras.layers.Dense(self.out_features, name="fc2")
        self.drop1 = tf.keras.layers.Dropout(self.dropout, name="drop1")
        self.drop2 = tf.keras.layers.Dropout(self.dropout, name="drop2")
        super().build(input_shape)

    def call(self, inputs, **kwargs):
        x = self.fc1(inputs)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x

    def get_config(self):
        config = super().get_config()
        config.update({
            "hidden_features":self.hidden_features, 
            "out_features":self.out_features, 
            "act_layer":self.act_layer,
            "dropout":self.dropout
            })
        return config

@tf.keras.utils.register_keras_serializable(package="gcvit")
class SE(tf.keras.layers.Layer):
    def __init__(self, oup=None, expansion=0.25, **kwargs):
        super().__init__(**kwargs)
        self.expansion = expansion
        self.oup = oup

    def build(self, input_shape):
        inp = input_shape[-1]
        self.oup = self.oup or inp
        self.avg_pool = tfa.layers.AdaptiveAveragePooling2D(1, name="avg_pool")
        self.fc = [
            tf.keras.layers.Dense(int(inp * self.expansion), use_bias=False, name='fc/0'),
            tf.keras.layers.Activation('gelu', name='fc/1'),
            tf.keras.layers.Dense(self.oup, use_bias=False, name='fc/2'),
            tf.keras.layers.Activation('sigmoid', name='fc/3')
            ]
        super().build(input_shape)

    def call(self, inputs, **kwargs):
        b, _, _, c = tf.unstack(tf.shape(inputs), num=4)
        x = tf.reshape(self.avg_pool(inputs), (b, c))
        for layer in self.fc:
            x = layer(x)
        x = tf.reshape(x, (b, 1, 1, c))
        return x*inputs

    def get_config(self):
        config = super().get_config()
        config.update({
            'expansion': self.expansion,
            'oup': self.oup,
            })
        return config

@tf.keras.utils.register_keras_serializable(package="gcvit")
class ReduceSize(tf.keras.layers.Layer):
    def __init__(self, keep_dim=False, **kwargs):
        super().__init__(**kwargs)
        self.keep_dim = keep_dim

    def build(self, input_shape):
        dim = input_shape[-1]
        dim_out = dim if self.keep_dim else 2*dim
        self.pad1 = tf.keras.layers.ZeroPadding2D(1, name='pad1')
        self.pad2 = tf.keras.layers.ZeroPadding2D(1, name='pad2')
        self.conv = [
            tf.keras.layers.DepthwiseConv2D(kernel_size=3, strides=1, padding='valid', use_bias=False, name='conv/0'),
            tf.keras.layers.Activation('gelu', name='conv/1'),
            SE(name='conv/2'),
            tf.keras.layers.Conv2D(dim, kernel_size=1, strides=1, padding='valid', use_bias=False, name='conv/3')
        ]
        self.reduction = tf.keras.layers.Conv2D(dim_out, kernel_size=3, strides=2, padding='valid', use_bias=False,
                                                name='reduction')
        self.norm1 = tf.keras.layers.LayerNormalization(axis=-1, epsilon=1e-05, name='norm1')  # eps like PyTorch
        self.norm2 = tf.keras.layers.LayerNormalization(axis=-1, epsilon=1e-05, name='norm2')
        super().build(input_shape)

    def call(self, inputs, **kwargs):
        x = self.norm1(inputs)
        xr = self.pad1(x)  # if pad had weights it would've thrown error with .save_weights()
        for layer in self.conv:
            xr = layer(xr)
        x = x + xr
        x = self.pad2(x)
        x = self.reduction(x)
        x = self.norm2(x)
        return x

    def get_config(self):
        config = super().get_config()
        config.update({
            "keep_dim":self.keep_dim,
        })
        return config

@tf.keras.utils.register_keras_serializable(package="gcvit")
class FeatExtract(tf.keras.layers.Layer):
    def __init__(self, keep_dim=False, **kwargs):
        super().__init__(**kwargs)
        self.keep_dim = keep_dim

    def build(self, input_shape):
        dim = input_shape[-1]
        self.pad1 = tf.keras.layers.ZeroPadding2D(1, name='pad1')
        self.pad2 = tf.keras.layers.ZeroPadding2D(1, name='pad2')
        self.conv = [
            tf.keras.layers.DepthwiseConv2D(kernel_size=3, strides=1, padding='valid', use_bias=False, name='conv/0'),
            tf.keras.layers.Activation('gelu', name='conv/1'),
            SE(name='conv/2'),
            tf.keras.layers.Conv2D(dim, kernel_size=1, strides=1, padding='valid', use_bias=False, name='conv/3')
        ]
        if not self.keep_dim:
            self.pool = tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='valid', name='pool')
        # else:
        #     self.pool = tf.keras.layers.Activation('linear', name='identity')  # hack for PyTorch nn.Identity layer ;)
        super().build(input_shape)

    def call(self, inputs, **kwargs):
        x = inputs
        xr = self.pad1(x)
        for layer in self.conv:
            xr = layer(xr)
        x = x + xr # if pad had weights it would've thrown error with .save_weights()
        if not self.keep_dim:
            x = self.pad2(x)
            x = self.pool(x)
        return x

    def get_config(self):
        config = super().get_config()
        config.update({
            "keep_dim":self.keep_dim,
        })
        return config
    
@tf.keras.utils.register_keras_serializable(package="gcvit")    
class Resizing(tf.keras.layers.Layer):
    def __init__(self,
               height,
               width,
               interpolation='bilinear',
               **kwargs):
        self.height = height
        self.width = width
        self.interpolation = interpolation
        super().__init__(**kwargs)

    def call(self, inputs):
        # tf.image.resize will always output float32 and operate more efficiently on
        # float32 unless interpolation is nearest, in which case ouput type matches
        # input type.
        if self.interpolation == 'nearest':
            input_dtype = self.compute_dtype
        else:
            input_dtype = tf.float32
        inputs = tf.cast(inputs, dtype=input_dtype)
        size = [self.height, self.width]
        outputs = tf.image.resize(
            inputs,
            size=size,
            method=self.interpolation)
        return tf.cast(outputs, self.compute_dtype)

    def compute_output_shape(self, input_shape):
        input_shape = tf.TensorShape(input_shape).as_list()
        input_shape[H_AXIS] = self.height
        input_shape[W_AXIS] = self.width
        return tf.TensorShape(input_shape)

    def get_config(self):
        config = super().get_config()
        config.update({
            'height': self.height,
            'width': self.width,
            'interpolation': self.interpolation,
            })
        return config