File size: 6,862 Bytes
f9da573
 
 
 
e133330
f9da573
 
 
 
 
 
 
 
1602adf
f9da573
 
 
 
 
8d46199
f9da573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ea39d5
 
 
 
 
 
f9da573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac5b87a
 
 
 
6966109
ac5b87a
6966109
 
 
ac5b87a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9da573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac5b87a
f9da573
 
 
 
 
 
 
 
 
 
 
 
8d46199
f9da573
 
 
 
 
 
 
 
 
9975133
bf8b612
9b8f482
bf8b612
 
 
2b221a0
 
 
 
bf8b612
9975133
 
 
8d46199
9975133
 
 
 
 
 
 
 
f9da573
 
9975133
f9da573
bf8b612
f9da573
bf8b612
f9da573
 
 
 
 
 
 
 
 
6966109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9da573
2b221a0
f9da573
8d46199
f9da573
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import streamlit as st
import pandas as pd
import pandas as pd
from tqdm import tqdm
import pinecone
import torch
from sentence_transformers import SentenceTransformer
from transformers import (
    pipeline,
    AutoTokenizer,
    AutoModelForCausalLM,
    AutoModelForSeq2SeqLM,
)
import openai
import streamlit_scrollable_textbox as stx


@st.experimental_singleton
def get_data():
    data = pd.read_csv("earnings_calls_cleaned_metadata.csv")
    return data


# Initialize models from HuggingFace


@st.experimental_singleton
def get_t5_model():
    return pipeline("summarization", model="t5-small", tokenizer="t5-small")


@st.experimental_singleton
def get_flan_t5_model():
    return pipeline(
        "summarization", model="google/flan-t5-small", tokenizer="google/flan-t5-small"
    )

def get_gptj():
    return pipeline(
        "summarization", model="EleutherAI/gpt-j-6B", tokenizer="EleutherAI/gpt-j-6B"
    )
    


@st.experimental_singleton
def get_mpnet_embedding_model():
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = SentenceTransformer(
        "sentence-transformers/all-mpnet-base-v2", device=device
    )
    model.max_seq_length = 512
    return model


@st.experimental_singleton
def get_sgpt_embedding_model():
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = SentenceTransformer(
        "Muennighoff/SGPT-125M-weightedmean-nli-bitfit", device=device
    )
    model.max_seq_length = 512
    return model


@st.experimental_memo
def save_key(api_key):
    return api_key


def query_pinecone(
    query, top_k, model, index, year, quarter, ticker, participant_type, threshold=0.25
):
    if participant_type == "Company Speaker":
        participant = "Answer"
    else:
        participant = "Question"
    # generate embeddings for the query
    xq = model.encode([query]).tolist()

    if year == "All":
        if quarter == "All":
            xc = index.query(
                xq,
                top_k=top_k,
                filter={
                    "Year": {
                        "$in": [
                            int("2020"),
                            int("2019"),
                            int("2018"),
                            int("2017"),
                            int("2016"),
                        ]
                    },
                    "Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
                    "Ticker": {"$eq": ticker},
                    "QA_Flag": {"$eq": participant},
                },
                include_metadata=True,
            )
        else:
            xc = index.query(
                xq,
                top_k=top_k,
                filter={
                    "Year": {
                        "$in": [
                            int("2020"),
                            int("2019"),
                            int("2018"),
                            int("2017"),
                            int("2016"),
                        ]
                    },
                    "Quarter": {"$eq": quarter},
                    "Ticker": {"$eq": ticker},
                    "QA_Flag": {"$eq": participant},
                },
                include_metadata=True,
            )
    else:
        # search pinecone index for context passage with the answer
        xc = index.query(
            xq,
            top_k=top_k,
            filter={
                "Year": int(year),
                "Quarter": {"$eq": quarter},
                "Ticker": {"$eq": ticker},
                "QA_Flag": {"$eq": participant},
            },
            include_metadata=True,
        )
    # filter the context passages based on the score threshold
    filtered_matches = []
    for match in xc["matches"]:
        if match["score"] >= threshold:
            filtered_matches.append(match)
    xc["matches"] = filtered_matches
    return xc


def format_query(query_results):
    # extract passage_text from Pinecone search result
    context = [result["metadata"]["Text"] for result in query_results["matches"]]
    return context


def sentence_id_combine(data, query_results, lag=1):
    # Extract sentence IDs from query results
    ids = [result["metadata"]["Sentence_id"] for result in query_results["matches"]]
    # Generate new IDs by adding a lag value to the original IDs
    new_ids = [id + i for id in ids for i in range(-lag, lag + 1)]
    # Remove duplicates and sort the new IDs
    new_ids = sorted(set(new_ids))
    # Create a list of lookup IDs by grouping the new IDs in groups of lag*2+1
    lookup_ids = [
        new_ids[i : i + (lag * 2 + 1)] for i in range(0, len(new_ids), lag * 2 + 1)
    ]
    # Create a list of context sentences by joining the sentences corresponding to the lookup IDs
    context_list = [
        " ".join(data.Text.iloc[lookup_id].to_list()) for lookup_id in lookup_ids
    ]
    return context_list


def text_lookup(data, sentence_ids):
    context = ". ".join(data.iloc[sentence_ids].to_list())
    return context


def generate_prompt(query_text, context_list):
    context = " ".join(context_list)
    prompt = f"""Answer the question in 6 long detailed points as accurately as possible using the provided context. Include as many key details as possible.
Context: {context}
Question: {query_text}
Answer:"""
    return prompt


def generate_prompt_2(query_text, context_list):
    context = " ".join(context_list)
    prompt = f"""
    Context information is below: 
    ---------------------
    {context}
    ---------------------
    Given the context information and prior knowledge, answer this question:
    {query_text} 
    Try to include as many key details as possible and format the answer in points."""
    return prompt


def gpt_model(prompt):
    response = openai.Completion.create(
        model="text-davinci-003",
        prompt=prompt,
        temperature=0.1,
        max_tokens=1024,
        top_p=1.0,
        frequency_penalty=0.5,
        presence_penalty=1,
    )
    return response.choices[0].text


# Transcript Retrieval


def retrieve_transcript(data, year, quarter, ticker):
    if year == "All" or quarter == "All":
        row = (
            data.loc[
                (data.Ticker == ticker),
                ["File_Name"],
            ]
            .drop_duplicates()
            .iloc[0, 0]
        )
    else:
        row = (
            data.loc[
                (data.Year == int(year))
                & (data.Quarter == quarter)
                & (data.Ticker == ticker),
                ["File_Name"],
            ]
            .drop_duplicates()
            .iloc[0, 0]
        )
    # convert row to a string and join values with "-"
    # row_str = "-".join(row.astype(str)) + ".txt"
    open_file = open(
        f"Transcripts/{ticker}/{row}",
        "r",
    )
    file_text = open_file.read()
    return file_text