Spaces:
Build error
Build error
File size: 6,862 Bytes
f9da573 e133330 f9da573 1602adf f9da573 8d46199 f9da573 3ea39d5 f9da573 ac5b87a 6966109 ac5b87a 6966109 ac5b87a f9da573 ac5b87a f9da573 8d46199 f9da573 9975133 bf8b612 9b8f482 bf8b612 2b221a0 bf8b612 9975133 8d46199 9975133 f9da573 9975133 f9da573 bf8b612 f9da573 bf8b612 f9da573 6966109 f9da573 2b221a0 f9da573 8d46199 f9da573 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import streamlit as st
import pandas as pd
import pandas as pd
from tqdm import tqdm
import pinecone
import torch
from sentence_transformers import SentenceTransformer
from transformers import (
pipeline,
AutoTokenizer,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
)
import openai
import streamlit_scrollable_textbox as stx
@st.experimental_singleton
def get_data():
data = pd.read_csv("earnings_calls_cleaned_metadata.csv")
return data
# Initialize models from HuggingFace
@st.experimental_singleton
def get_t5_model():
return pipeline("summarization", model="t5-small", tokenizer="t5-small")
@st.experimental_singleton
def get_flan_t5_model():
return pipeline(
"summarization", model="google/flan-t5-small", tokenizer="google/flan-t5-small"
)
def get_gptj():
return pipeline(
"summarization", model="EleutherAI/gpt-j-6B", tokenizer="EleutherAI/gpt-j-6B"
)
@st.experimental_singleton
def get_mpnet_embedding_model():
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SentenceTransformer(
"sentence-transformers/all-mpnet-base-v2", device=device
)
model.max_seq_length = 512
return model
@st.experimental_singleton
def get_sgpt_embedding_model():
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SentenceTransformer(
"Muennighoff/SGPT-125M-weightedmean-nli-bitfit", device=device
)
model.max_seq_length = 512
return model
@st.experimental_memo
def save_key(api_key):
return api_key
def query_pinecone(
query, top_k, model, index, year, quarter, ticker, participant_type, threshold=0.25
):
if participant_type == "Company Speaker":
participant = "Answer"
else:
participant = "Question"
# generate embeddings for the query
xq = model.encode([query]).tolist()
if year == "All":
if quarter == "All":
xc = index.query(
xq,
top_k=top_k,
filter={
"Year": {
"$in": [
int("2020"),
int("2019"),
int("2018"),
int("2017"),
int("2016"),
]
},
"Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
"Ticker": {"$eq": ticker},
"QA_Flag": {"$eq": participant},
},
include_metadata=True,
)
else:
xc = index.query(
xq,
top_k=top_k,
filter={
"Year": {
"$in": [
int("2020"),
int("2019"),
int("2018"),
int("2017"),
int("2016"),
]
},
"Quarter": {"$eq": quarter},
"Ticker": {"$eq": ticker},
"QA_Flag": {"$eq": participant},
},
include_metadata=True,
)
else:
# search pinecone index for context passage with the answer
xc = index.query(
xq,
top_k=top_k,
filter={
"Year": int(year),
"Quarter": {"$eq": quarter},
"Ticker": {"$eq": ticker},
"QA_Flag": {"$eq": participant},
},
include_metadata=True,
)
# filter the context passages based on the score threshold
filtered_matches = []
for match in xc["matches"]:
if match["score"] >= threshold:
filtered_matches.append(match)
xc["matches"] = filtered_matches
return xc
def format_query(query_results):
# extract passage_text from Pinecone search result
context = [result["metadata"]["Text"] for result in query_results["matches"]]
return context
def sentence_id_combine(data, query_results, lag=1):
# Extract sentence IDs from query results
ids = [result["metadata"]["Sentence_id"] for result in query_results["matches"]]
# Generate new IDs by adding a lag value to the original IDs
new_ids = [id + i for id in ids for i in range(-lag, lag + 1)]
# Remove duplicates and sort the new IDs
new_ids = sorted(set(new_ids))
# Create a list of lookup IDs by grouping the new IDs in groups of lag*2+1
lookup_ids = [
new_ids[i : i + (lag * 2 + 1)] for i in range(0, len(new_ids), lag * 2 + 1)
]
# Create a list of context sentences by joining the sentences corresponding to the lookup IDs
context_list = [
" ".join(data.Text.iloc[lookup_id].to_list()) for lookup_id in lookup_ids
]
return context_list
def text_lookup(data, sentence_ids):
context = ". ".join(data.iloc[sentence_ids].to_list())
return context
def generate_prompt(query_text, context_list):
context = " ".join(context_list)
prompt = f"""Answer the question in 6 long detailed points as accurately as possible using the provided context. Include as many key details as possible.
Context: {context}
Question: {query_text}
Answer:"""
return prompt
def generate_prompt_2(query_text, context_list):
context = " ".join(context_list)
prompt = f"""
Context information is below:
---------------------
{context}
---------------------
Given the context information and prior knowledge, answer this question:
{query_text}
Try to include as many key details as possible and format the answer in points."""
return prompt
def gpt_model(prompt):
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0.1,
max_tokens=1024,
top_p=1.0,
frequency_penalty=0.5,
presence_penalty=1,
)
return response.choices[0].text
# Transcript Retrieval
def retrieve_transcript(data, year, quarter, ticker):
if year == "All" or quarter == "All":
row = (
data.loc[
(data.Ticker == ticker),
["File_Name"],
]
.drop_duplicates()
.iloc[0, 0]
)
else:
row = (
data.loc[
(data.Year == int(year))
& (data.Quarter == quarter)
& (data.Ticker == ticker),
["File_Name"],
]
.drop_duplicates()
.iloc[0, 0]
)
# convert row to a string and join values with "-"
# row_str = "-".join(row.astype(str)) + ".txt"
open_file = open(
f"Transcripts/{ticker}/{row}",
"r",
)
file_text = open_file.read()
return file_text
|