File size: 19,017 Bytes
1a08523
 
e375940
 
 
94a67ea
8cd1f1e
94a67ea
 
 
c5e4524
9c49e99
6a79fd2
 
c5e4524
5482130
c5e4524
 
244a3e0
 
c5e4524
 
 
 
 
 
 
 
 
1a08523
8b61059
c5e4524
 
6627aee
 
0175cb6
6627aee
0175cb6
6627aee
 
1a08523
 
 
 
9c49e99
c5e4524
 
 
f9da573
e375940
f9da573
 
1a08523
f9da573
c5e4524
 
 
 
 
 
8cd1f1e
ff5dcc7
a7b0635
9975133
b19bb41
 
 
8cd1f1e
9975133
 
9c49e99
0175cb6
0f10e25
1a08523
 
 
0175cb6
244a3e0
0175cb6
9c49e99
9975133
 
1a08523
 
 
 
 
6627aee
1a08523
 
816093e
6627aee
ac5b87a
c5f41e6
1a08523
 
c5f41e6
 
 
 
 
 
 
 
 
 
 
 
 
1a08523
 
 
 
 
 
 
 
6627aee
1a08523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
816093e
1a08523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5f41e6
9975133
 
 
1a08523
 
 
 
 
 
 
 
8cd1f1e
 
 
 
e375940
9975133
 
8cd1f1e
 
 
 
1a08523
 
 
 
 
9975133
 
8cd1f1e
 
 
 
e375940
 
 
8cd1f1e
 
 
 
 
 
e375940
 
 
8cd1f1e
 
 
 
e375940
 
 
 
 
 
 
 
 
 
 
 
8cd1f1e
9975133
1a08523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9975133
e514fa8
fbd690d
 
1a08523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e375940
1a08523
 
 
 
 
 
 
 
 
 
 
 
 
 
e375940
1a08523
 
 
 
e514fa8
 
1a08523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cd1f1e
1a08523
 
 
 
 
 
 
 
 
 
8cd1f1e
9975133
 
e375940
816093e
e375940
9975133
 
 
 
 
 
 
 
 
 
1a08523
9c49e99
1a08523
 
 
 
 
 
 
 
 
 
 
 
9c49e99
8cd1f1e
 
0175cb6
 
 
8cd1f1e
 
9975133
9c49e99
 
816093e
9c49e99
 
 
 
 
 
 
 
 
 
 
8cd1f1e
 
6627aee
8cd1f1e
9975133
6627aee
0175cb6
 
6627aee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c49e99
 
816093e
9c49e99
 
 
6627aee
0175cb6
 
 
6627aee
 
 
 
0175cb6
 
 
6627aee
0175cb6
 
 
 
6627aee
 
 
 
 
 
0175cb6
 
 
 
 
6627aee
0175cb6
 
 
 
6627aee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
816093e
6627aee
 
 
 
 
9c49e99
1a08523
8cd1f1e
f9da573
1a08523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import re

import openai
import streamlit_scrollable_textbox as stx

import pinecone
import streamlit as st

st.set_page_config(layout="wide")  # isort: split

from utils.entity_extraction import (
    clean_entities,
    extract_quarter_year,
    extract_ticker_spacy,
    format_entities_flan_alpaca,
    generate_alpaca_ner_prompt,
)
from utils.models import (
    generate_entities_flan_alpaca_checkpoint,
    generate_entities_flan_alpaca_inference_api,
    generate_text_flan_t5,
    get_data,
    get_flan_alpaca_xl_model,
    get_flan_t5_model,
    get_mpnet_embedding_model,
    get_sgpt_embedding_model,
    get_spacy_model,
    get_splade_sparse_embedding_model,
    get_t5_model,
    gpt_turbo_model,
    save_key,
)
from utils.prompts import (
    generate_flant5_prompt_instruct_chunk_context,
    generate_flant5_prompt_instruct_chunk_context_single,
    generate_flant5_prompt_instruct_complete_context,
    generate_flant5_prompt_summ_chunk_context,
    generate_flant5_prompt_summ_chunk_context_single,
    generate_gpt_j_two_shot_prompt_1,
    generate_gpt_j_two_shot_prompt_2,
    generate_gpt_prompt_alpaca,
    generate_gpt_prompt_alpaca_multi_doc,
    generate_gpt_prompt_original,
    generate_multi_doc_context,
    get_context_list_prompt,
)
from utils.retriever import (
    format_query,
    query_pinecone,
    query_pinecone_sparse,
    sentence_id_combine,
    text_lookup,
    year_quarter_range,
)
from utils.transcript_retrieval import retrieve_transcript
from utils.vector_index import (
    create_dense_embeddings,
    create_sparse_embeddings,
    hybrid_score_norm,
)

st.title("Question Answering on Earnings Call Transcripts")


st.write(
    "The app uses the quarterly earnings call transcripts for 10 companies (Apple, AMD, Amazon, Cisco, Google, Microsoft, Nvidia, ASML, Intel, Micron) for the years 2016 to 2020."
)

col1, col2 = st.columns([3, 3], gap="medium")


with st.sidebar:
    ner_choice = st.selectbox("Select NER Model", ["Spacy", "Alpaca"])
    document_type = st.selectbox(
        "Select Query Type", ["Single-Document", "Multi-Document"]
    )

if ner_choice == "Spacy":
    ner_model = get_spacy_model()

with col1:
    st.subheader("Question")
    if document_type == "Single-Document":
        query_text = st.text_area(
            "Input Query",
            value="What was discussed regarding Wearables revenue performance?",
        )
    else:
        query_text = st.text_area(
            "Input Query",
            value="How has revenue from Wearables performed over the past 2 years?",
        )


years_choice = ["2020", "2019", "2018", "2017", "2016", "All"]
quarters_choice = ["Q1", "Q2", "Q3", "Q4", "All"]
ticker_choice = [
    "AAPL",
    "CSCO",
    "MSFT",
    "ASML",
    "NVDA",
    "GOOGL",
    "MU",
    "INTC",
    "AMZN",
    "AMD",
]


if document_type == "Single-Document":
    if ner_choice == "Alpaca":
        ner_prompt = generate_alpaca_ner_prompt(query_text)
        entity_text = generate_entities_flan_alpaca_inference_api(ner_prompt)
        company_ent, quarter_ent, year_ent = format_entities_flan_alpaca(
            entity_text
        )
    else:
        company_ent = extract_ticker_spacy(query_text, ner_model)
        quarter_ent, year_ent = extract_quarter_year(query_text)

    ticker_index, quarter_index, year_index = clean_entities(
        company_ent, quarter_ent, year_ent
    )

    with col1:
        # Hardcoding the defaults for a question without metadata
        if (
            query_text
            == "What was discussed regarding Wearables revenue performance?"
        ):
            year = st.selectbox("Year", years_choice)
            quarter = st.selectbox("Quarter", quarters_choice)
            ticker = st.selectbox("Company", ticker_choice)
        else:
            year = st.selectbox("Year", years_choice, index=year_index)
            quarter = st.selectbox(
                "Quarter", quarters_choice, index=quarter_index
            )
            ticker = st.selectbox("Company", ticker_choice, ticker_index)

        participant_type = st.selectbox(
            "Speaker", ["Company Speaker", "Analyst"]
        )

else:
    # Multi-Document Case

    with col1:
        # Hardcoding the defaults for a question without metadata
        if (
            query_text
            == "How has revenue from Wearables performed over the past 2 years?"
        ):
            start_year = st.selectbox("Start Year", years_choice, index=2)
            start_quarter = st.selectbox(
                "Start Quarter", quarters_choice, index=0
            )

            end_year = st.selectbox("End Year", years_choice, index=0)
            end_quarter = st.selectbox("End Quarter", quarters_choice, index=0)

            ticker = st.selectbox("Company", ticker_choice, index=0)
        else:
            start_year = st.selectbox("Start Year", years_choice, index=2)
            start_quarter = st.selectbox(
                "Start Quarter", quarters_choice, index=0
            )

            end_year = st.selectbox("End Year", years_choice, index=0)
            end_quarter = st.selectbox("End Quarter", quarters_choice, index=0)

            ticker = st.selectbox("Company", ticker_choice, index=0)

        participant_type = st.selectbox(
            "Speaker", ["Company Speaker", "Analyst"]
        )


with st.sidebar:
    st.subheader("Select Options:")

    if document_type == "Single-Document":
        num_results = int(
            st.number_input("Number of Results to query", 1, 15, value=5)
        )
    else:
        num_results = int(
            st.number_input("Number of Results to query", 1, 15, value=2)
        )


# Choose encoder model

encoder_models_choice = ["MPNET", "SGPT", "Hybrid MPNET - SPLADE"]
with st.sidebar:
    encoder_model = st.selectbox("Select Encoder Model", encoder_models_choice)


# Choose decoder model

# Restricting multi-document to only GPT-3
if document_type == "Single-Document":
    decoder_models_choice = ["GPT-3.5 Turbo", "T5", "FLAN-T5", "GPT-J"]
else:
    decoder_models_choice = ["GPT-3.5 Turbo"]
with st.sidebar:
    decoder_model = st.selectbox("Select Decoder Model", decoder_models_choice)


if encoder_model == "MPNET":
    # Connect to pinecone environment
    pinecone.init(
        api_key=st.secrets["pinecone_mpnet"], environment="us-east1-gcp"
    )
    pinecone_index_name = "week2-all-mpnet-base"
    pinecone_index = pinecone.Index(pinecone_index_name)
    retriever_model = get_mpnet_embedding_model()

elif encoder_model == "SGPT":
    # Connect to pinecone environment
    pinecone.init(
        api_key=st.secrets["pinecone_sgpt"], environment="us-east1-gcp"
    )
    pinecone_index_name = "week2-sgpt-125m"
    pinecone_index = pinecone.Index(pinecone_index_name)
    retriever_model = get_sgpt_embedding_model()

elif encoder_model == "Hybrid MPNET - SPLADE":
    pinecone.init(
        api_key=st.secrets["pinecone_hybrid_splade_mpnet"],
        environment="us-central1-gcp",
    )
    pinecone_index_name = "splade-mpnet"
    pinecone_index = pinecone.Index(pinecone_index_name)
    retriever_model = get_mpnet_embedding_model()
    (
        sparse_retriever_model,
        sparse_retriever_tokenizer,
    ) = get_splade_sparse_embedding_model()

with st.sidebar:
    if document_type == "Single-Document":
        window = int(st.number_input("Sentence Window Size", 0, 10, value=1))

        threshold = float(
            st.number_input(
                label="Similarity Score Threshold",
                step=0.05,
                format="%.2f",
                value=0.25,
            )
        )
    else:
        window = int(st.number_input("Sentence Window Size", 0, 10, value=0))

        threshold = float(
            st.number_input(
                label="Similarity Score Threshold",
                step=0.05,
                format="%.2f",
                value=0.6,
            )
        )

data = get_data()

if document_type == "Single-Document":
    if encoder_model == "Hybrid SGPT - SPLADE":
        dense_query_embedding = create_dense_embeddings(
            query_text, retriever_model
        )
        sparse_query_embedding = create_sparse_embeddings(
            query_text, sparse_retriever_model, sparse_retriever_tokenizer
        )
        dense_query_embedding, sparse_query_embedding = hybrid_score_norm(
            dense_query_embedding, sparse_query_embedding, 0
        )
        query_results = query_pinecone_sparse(
            dense_query_embedding,
            sparse_query_embedding,
            num_results,
            pinecone_index,
            year,
            quarter,
            ticker,
            participant_type,
            threshold,
        )

    else:
        dense_query_embedding = create_dense_embeddings(
            query_text, retriever_model
        )
        query_results = query_pinecone(
            dense_query_embedding,
            num_results,
            pinecone_index,
            year,
            quarter,
            ticker,
            participant_type,
            threshold,
        )

    if threshold <= 0.90:
        context_list = sentence_id_combine(data, query_results, lag=window)
    else:
        context_list = format_query(query_results)

else:
    # Multi-Document Retreival
    if encoder_model == "Hybrid SGPT - SPLADE":
        dense_query_embedding = create_dense_embeddings(
            query_text, retriever_model
        )
        sparse_query_embedding = create_sparse_embeddings(
            query_text, sparse_retriever_model, sparse_retriever_tokenizer
        )
        dense_query_embedding, sparse_query_embedding = hybrid_score_norm(
            dense_query_embedding, sparse_query_embedding, 0
        )
        year_quarter_list = year_quarter_range(
            start_quarter, start_year, end_quarter, end_year
        )

        context_group = []
        for year, quarter in year_quarter_list:
            query_results = query_pinecone_sparse(
                dense_query_embedding,
                sparse_query_embedding,
                num_results,
                pinecone_index,
                year,
                quarter,
                ticker,
                participant_type,
                threshold,
            )
            results_list = sentence_id_combine(data, query_results, lag=window)
            context_group.append((results_list, year, quarter))

    else:
        dense_query_embedding = create_dense_embeddings(
            query_text, retriever_model
        )
        year_quarter_list = year_quarter_range(
            start_quarter, start_year, end_quarter, end_year
        )

        context_group = []
        for year, quarter in year_quarter_list:
            query_results = query_pinecone(
                dense_query_embedding,
                num_results,
                pinecone_index,
                year,
                quarter,
                ticker,
                participant_type,
                threshold,
            )
            results_list = sentence_id_combine(data, query_results, lag=window)
            context_group.append((results_list, year, quarter))

    multi_doc_context = generate_multi_doc_context(context_group)


if decoder_model == "GPT-3.5 Turbo":
    if document_type == "Single-Document":
        prompt = generate_gpt_prompt_alpaca(query_text, context_list)
    else:
        prompt = generate_gpt_prompt_alpaca_multi_doc(
            query_text, context_group
        )

    with col2:
        with st.form("my_form"):
            edited_prompt = st.text_area(
                label="Model Prompt", value=prompt, height=400
            )

            openai_key = st.text_input(
                "Enter OpenAI key",
                value="",
                type="password",
            )
            submitted = st.form_submit_button("Submit")
            if submitted:
                api_key = save_key(openai_key)
                openai.api_key = api_key
                generated_text = gpt_turbo_model(edited_prompt)
                st.subheader("Answer:")
                regex_pattern_sentences = (
                    "(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s"
                )
                generated_text_list = re.split(
                    regex_pattern_sentences, generated_text
                )
                for answer_text in generated_text_list:
                    answer_text = f"""{answer_text}"""
                    st.write(
                        f"<ul><li><p>{answer_text}</p></li></ul>",
                        unsafe_allow_html=True,
                    )


elif decoder_model == "T5":
    prompt = generate_flant5_prompt_instruct_complete_context(
        query_text, context_list
    )
    t5_pipeline = get_t5_model()
    output_text = []
    with col2:
        with st.form("my_form"):
            edited_prompt = st.text_area(
                label="Model Prompt", value=prompt, height=400
            )
            context_list = get_context_list_prompt(edited_prompt)
            submitted = st.form_submit_button("Submit")
            if submitted:
                for context_text in context_list:
                    output_text.append(
                        t5_pipeline(context_text)[0]["summary_text"]
                    )
                st.subheader("Answer:")
                for text in output_text:
                    st.markdown(f"- {text}")

elif decoder_model == "FLAN-T5":
    flan_t5_model, flan_t5_tokenizer = get_flan_t5_model()
    output_text = []
    with col2:
        prompt_type = st.selectbox(
            "Select prompt type",
            ["Complete Text QA", "Chunkwise QA", "Chunkwise Summarize"],
        )
        if prompt_type == "Complete Text QA":
            prompt = generate_flant5_prompt_instruct_complete_context(
                query_text, context_list
            )
        elif prompt_type == "Chunkwise QA":
            st.write("The following prompt is not editable.")
            prompt = generate_flant5_prompt_instruct_chunk_context(
                query_text, context_list
            )
        elif prompt_type == "Chunkwise Summarize":
            st.write("The following prompt is not editable.")
            prompt = generate_flant5_prompt_summ_chunk_context(
                query_text, context_list
            )
        else:
            prompt = ""
        with st.form("my_form"):
            edited_prompt = st.text_area(
                label="Model Prompt", value=prompt, height=400
            )
            submitted = st.form_submit_button("Submit")
            if submitted:
                if prompt_type == "Complete Text QA":
                    output_text_string = generate_text_flan_t5(
                        flan_t5_model, flan_t5_tokenizer, prompt
                    )
                    st.subheader("Answer:")
                    st.write(output_text_string)
                elif prompt_type == "Chunkwise QA":
                    for context_text in context_list:
                        model_input = generate_flant5_prompt_instruct_chunk_context_single(
                            query_text, context_text
                        )
                        output_text.append(
                            generate_text_flan_t5(
                                flan_t5_model, flan_t5_tokenizer, model_input
                            )
                        )
                    st.subheader("Answer:")
                    for text in output_text:
                        if "(iii)" not in text:
                            st.markdown(f"- {text}")
                elif prompt_type == "Chunkwise Summarize":
                    for context_text in context_list:
                        model_input = (
                            generate_flant5_prompt_summ_chunk_context_single(
                                query_text, context_text
                            )
                        )
                        output_text.append(
                            generate_text_flan_t5(
                                flan_t5_model, flan_t5_tokenizer, model_input
                            )
                        )
                    st.subheader("Answer:")
                    for text in output_text:
                        if "(iii)" not in text:
                            st.markdown(f"- {text}")

if decoder_model == "GPT-J":
    if ticker in ["AAPL", "AMD"]:
        prompt = generate_gpt_j_two_shot_prompt_1(query_text, context_list)
    elif ticker in ["NVDA", "INTC", "AMZN"]:
        prompt = generate_gpt_j_two_shot_prompt_2(query_text, context_list)
    else:
        prompt = generate_gpt_j_two_shot_prompt_1(query_text, context_list)
    with col2:
        with st.form("my_form"):
            edited_prompt = st.text_area(
                label="Model Prompt", value=prompt, height=400
            )
            st.write(
                "The app currently just shows the prompt. The app does not load the model due to memory limitations."
            )
            submitted = st.form_submit_button("Submit")

tab1, tab2 = st.tabs(["Retrived Text", "Retrieved Documents"])


with tab1:
    if document_type == "Single-Document":
        with st.expander("See Retrieved Text"):
            st.subheader("Retrieved Text:")
            for context_text in context_list:
                context_text = f"""{context_text}"""
                st.write(
                    f"<ul><li><p>{context_text}</p></li></ul>",
                    unsafe_allow_html=True,
                )
    else:
        with st.expander("See Retrieved Text"):
            st.subheader("Retrieved Text:")
            sections = [
                s.strip()
                for s in multi_doc_context.split("Document: ")
                if s.strip()
            ]

            # Add "Document: " back to the beginning of each section
            context_list = [
                "Document: " + s[0:7] + "\n" + s[7:] for s in sections
            ]
            for context_text in context_list:
                context_text = f"""{context_text}"""
                st.write(
                    f"<ul><li><p>{context_text}</p></li></ul>",
                    unsafe_allow_html=True,
                )


with tab2:
    if document_type == "Single-Document":
        file_text = retrieve_transcript(data, year, quarter, ticker)
        with st.expander("See Transcript"):
            st.subheader("Earnings Call Transcript:")
            stx.scrollableTextbox(
                file_text, height=700, border=False, fontFamily="Helvetica"
            )
    else:
        for year, quarter in year_quarter_list:
            file_text = retrieve_transcript(data, year, quarter, ticker)
            with st.expander(f"See Transcript - {quarter} {year}"):
                st.subheader("Earnings Call Transcript - {quarter} {year}:")
                stx.scrollableTextbox(
                    file_text, height=700, border=False, fontFamily="Helvetica"
                )