File size: 15,040 Bytes
8c38616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48253d2
8c38616
 
 
 
 
 
 
 
 
48253d2
8c38616
 
 
 
 
 
 
48253d2
8c38616
 
48253d2
8c38616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48253d2
8c38616
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
"""
Source: https://awesome-panel.org/resources/commuting_flows_italian_regions/
"""
import holoviews as hv
import numpy as np
import pandas as pd
import panel as pn
from bokeh.models import HoverTool
from shapely.geometry import LineString

# Load the bokeh extension
hv.extension("bokeh")

# Set the sizing mode
pn.extension(sizing_mode="stretch_width")

# Dashboard title
DASH_TITLE = "Commuting flows between Italian Regions"

# Default colors for the dashboard
ACCENT = "#2f4f4f"
INCOMING_COLOR = "rgba(0, 108, 151, 0.75)"
OUTGOING_COLOR = "rgba(199, 81, 51, 0.75)"
INTERNAL_COLOR = "rgba(47, 79, 79, 0.55)"

# Default colors for indicators
DEFAULT_COLOR = "white"
TITLE_SIZE = "18pt"
FONT_SIZE = "20pt"

# Min/Max node size
MIN_PT_SIZE = 7
MAX_PT_SIZE = 10

# Min/Max curve width
MIN_LW = 1
MAX_LW = 10

# Dataframes dtypes
ITA_REGIONS_DTYPES = {
    "cod_reg": "uint8",
    "den_reg": "object",
    "x": "object",
    "y": "object",
}

NODES_DTYPES = {
    "cod_reg": "uint8",
    "x": "float64",
    "y": "float64",
}

EDGES_DTYPES = {
    "motivo": "object",
    "interno": "bool",
    "flussi": "uint32",
    "reg_o": "uint8",
    "reg_d": "uint8",
    "x_o": "float64",
    "y_o": "float64",
    "x_d": "float64",
    "y_d": "float64",
}

# Dictionary that maps region code to its name
ITA_REGIONS = {
    1: "Piemonte",
    2: "Valle d'Aosta/Vallée d'Aoste",
    3: "Lombardia",
    4: "Trentino-Alto Adige/Südtirol",
    5: "Veneto",
    6: "Friuli-Venezia Giulia",
    7: "Liguria",
    8: "Emilia-Romagna",
    9: "Toscana",
    10: "Umbria",
    11: "Marche",
    12: "Lazio",
    13: "Abruzzo",
    14: "Molise",
    15: "Campania",
    16: "Puglia",
    17: "Basilicata",
    18: "Calabria",
    19: "Sicilia",
    20: "Sardegna",
}

# Dictionary of options (Label/option) for commuting purpose
COMMUTING_PURPOSE = {
    "Work": "Lavoro",
    "Study": "Studio",
    "Total": "Totale",
}

# Dashboard description
DASH_DESCR = f"""
<div>
  <hr />
  <p>A Panel dashboard showing <b style="color:{INCOMING_COLOR};">incoming</b>
    and <b style="color:{OUTGOING_COLOR};">outgoing</b> commuting flows
    for work and study between Italian Regions.</p>
  <p>The width of the curves reflects the magnitude of the flows.</p>
  <p>
    <a href="https://www.istat.it/it/archivio/139381" target="_blank">Commuting data</a> from the
    15th Population and Housing Census (Istat, 2011).
  </p>
  <p>
    <a href="https://www.istat.it/it/archivio/222527" target="_blank">Administrative boundaries</a> from
    ISTAT.
  </p>
  <hr />
</div>
"""

CSS_FIX = """
:host(.outline) .bk-btn.bk-btn-primary.bk-active, :host(.outline) .bk-btn.bk-btn-primary:active {
    color: var(--foreground-on-accent-rest) !important;
}
"""

if not CSS_FIX in pn.config.raw_css:
    pn.config.raw_css.append(CSS_FIX)


def get_incoming_numind(edges, region_code, comm_purpose):
    """
    Returns the total incoming commuters to the selected Region.
    """

    # Get the value of incoming commuters
    if comm_purpose == "Totale":
        query = f"reg_d == {region_code} & interno == 0"
    else:
        query = f"(reg_d == {region_code} & motivo == '{comm_purpose}' & interno == 0)"

    flows = edges.query(query)["flussi"].sum()

    return pn.indicators.Number(
        name="Incoming",
        value=flows,
        default_color=DEFAULT_COLOR,
        styles={"background": INCOMING_COLOR, "padding": "5px 10px 5px 10px", "border-radius": "5px"},
        title_size=TITLE_SIZE,
        font_size=FONT_SIZE,
        sizing_mode="stretch_width",
        align="center",
        css_classes=["center_number"],
    )


def get_outgoing_numind(edges, region_code, comm_purpose):
    """
    Returns the outgoing commuters from
    the selected Region.
    """

    # Get the value of outgoing commuters
    if comm_purpose == "Totale":
        query = f"reg_o == {region_code} & interno == 0"
    else:
        query = f"(reg_o == {region_code} & motivo == '{comm_purpose}' & interno == 0)"

    flows = edges.query(query)["flussi"].sum()

    return pn.indicators.Number(
        name="Outgoing",
        value=flows,
        default_color=DEFAULT_COLOR,
        styles={"background": OUTGOING_COLOR, "padding": "5px 10px 5px 10px", "border-radius": "5px"},
        title_size=TITLE_SIZE,
        font_size=FONT_SIZE,
        sizing_mode="stretch_width",
        align="center",
        css_classes=["center_number"],
    )


def get_internal_numind(edges, region_code, comm_purpose):
    """
    Returns the number of internal commuters of
    the selected Region.
    """

    # Get the value of internal commuters
    if comm_purpose == "Totale":
        query = f"reg_o == {region_code} & interno == 1"
    else:
        query = f"(reg_o == {region_code} & motivo == '{comm_purpose}' & interno == 1)"

    flows = edges.query(query)["flussi"].sum()

    return pn.indicators.Number(
        name="Internal mobility",
        value=flows,
        default_color=DEFAULT_COLOR,
        styles={"background": INTERNAL_COLOR, "padding": "5px 10px 5px 10px", "border-radius": "5px"},
        title_size=TITLE_SIZE,
        font_size=FONT_SIZE,
        sizing_mode="stretch_width",
        align="center",
        css_classes=["center_number"],
    )


def filter_edges(edges, region_code, comm_purpose):
    """
    This function filters the rows of the edges for
    the selected Region and commuting purpose.
    """

    if comm_purpose == "Totale":
        query = f"(reg_o == {region_code} & interno == 0) |"
        query += f" (reg_d == {region_code} & interno == 0)"
    else:
        query = f"(reg_o == {region_code} & motivo == '{comm_purpose}' & interno == 0) |"
        query += f" (reg_d == {region_code} & motivo == '{comm_purpose}' & interno == 0)"
    return edges.query(query)


def get_nodes(nodes, edges, region_code, comm_purpose):
    """
    Get the graph's nodes for the selected Region and commuting purpose
    """

    # Filter the edges by Region and commuting purpose
    filt_edges = filter_edges(edges, region_code, comm_purpose)

    # Find the unique values of region codes
    region_codes = np.unique(filt_edges[["reg_o", "reg_d"]].values)

    # Filter the nodes
    nodes = nodes[nodes["cod_reg"].isin(region_codes)]

    # Reoder the columns for hv.Graph
    nodes = nodes[["x", "y", "cod_reg"]]

    # Assign the node size
    nodes["size"] = np.where(
        nodes["cod_reg"] == region_code, MAX_PT_SIZE, MIN_PT_SIZE
    )

    # Assigns a marker to the nodes
    nodes["marker"] = np.where(
        nodes["cod_reg"] == region_code, "square", "circle"
    )

    return nodes


def get_bezier_curve(x_o, y_o, x_d, y_d, steps=25):
    """
    Draw a Bézier curve defined by a start point, endpoint and a control points
    Source: https://stackoverflow.com/questions/69804595/trying-to-make-a-bezier-curve-on-pygame-library
    """

    # Generate the O/D linestring
    od_line = LineString([(x_o, y_o), (x_d, y_d)])

    # Calculate the offset distance of the control point
    offset_distance = od_line.length / 2

    # Create a line parallel to the original at the offset distance
    offset_pline = od_line.parallel_offset(offset_distance, "left")

    # Get the XY coodinates of the control point
    ctrl_x = offset_pline.centroid.x
    ctrl_y = offset_pline.centroid.y

    # Calculate the XY coordinates of the Bézier curve
    t = np.array([i * 1 / steps for i in range(0, steps + 1)])
    x_coords = x_o * (1 - t) ** 2 + 2 * (1 - t) * t * ctrl_x + x_d * t**2
    y_coords = y_o * (1 - t) ** 2 + 2 * (1 - t) * t * ctrl_y + y_d * t**2

    return (x_coords, y_coords)


def get_edge_width(flow, min_flow, max_flow):
    """
    This function calculates the width of the curves
    according to the magnitude of the flow.
    """

    return MIN_LW + np.power(flow - min_flow, 0.57) * (
        MAX_LW - MIN_LW
    ) / np.power(max_flow - min_flow, 0.57)


def get_edges(nodes, edges, region_code, comm_purpose):
    """
    Get the graph's edges for the selected Region and commuting purpose
    """

    # Filter the edges by Region and commuting purpose
    filt_edges = filter_edges(edges, region_code, comm_purpose).copy()

    # Aggregate the flows by Region of origin and destination
    if comm_purpose == "Totale":
        filt_edges = (
            filt_edges.groupby(["reg_o", "reg_d"])
            .agg(
                motivo=("motivo", "first"),
                interno=("interno", "first"),
                flussi=("flussi", "sum"),
            )
            .reset_index()
        )

    # Assign Region names
    filt_edges.loc[:,"den_reg_o"] = filt_edges["reg_o"].map(ITA_REGIONS)
    filt_edges.loc[:,"den_reg_d"] = filt_edges["reg_d"].map(ITA_REGIONS)

    # Add xy coordinates of origin
    filt_edges = filt_edges.merge(
        nodes.add_suffix("_o"), left_on="reg_o", right_on="cod_reg_o"
    )

    # Add xy coordinates of destination
    filt_edges = filt_edges.merge(
        nodes.add_suffix("_d"), left_on="reg_d", right_on="cod_reg_d"
    )

    # Get the Bézier curve
    filt_edges["curve"] = filt_edges.apply(
        lambda row: get_bezier_curve(
            row["x_o"], row["y_o"], row["x_d"], row["y_d"]
        ),
        axis=1,
    )

    # Get the minimum/maximum flow
    min_flow = filt_edges["flussi"].min()
    max_flow = filt_edges["flussi"].max()

    # Calculate the curve width
    filt_edges["width"] = filt_edges.apply(
        lambda row: get_edge_width(
            row["flussi"],
            min_flow,
            max_flow,
        ),
        axis=1,
    )

    # Assigns the color to the incoming/outgoing edges
    filt_edges["color"] = np.where(
        filt_edges["reg_d"] == region_code, INCOMING_COLOR, OUTGOING_COLOR
    )

    filt_edges = filt_edges.sort_values(by="flussi")

    return filt_edges


def get_flow_map(nodes, edges, region_admin_bounds, region_code, comm_purpose):
    """
    Returns a Graph showing incoming and outgoing commuting flows
    for the selected Region and commuting purpose.
    """

    def hook(plot, element):
        """
        Custom hook for disabling x/y tick lines/labels
        """
        plot.state.xaxis.major_tick_line_color = None
        plot.state.xaxis.minor_tick_line_color = None
        plot.state.xaxis.major_label_text_font_size = "0pt"
        plot.state.yaxis.major_tick_line_color = None
        plot.state.yaxis.minor_tick_line_color = None
        plot.state.yaxis.major_label_text_font_size = "0pt"

    # Define a custom Hover tool
    flow_map_hover = HoverTool(
        tooltips=[
            ("Origin", "@den_reg_o"),
            ("Destination", "@den_reg_d"),
            ("Commuters", "@flussi"),
        ]
    )

    # Get the Nodes of the selected Region and commuting purpose
    region_graph_nodes = get_nodes(nodes, edges, region_code, comm_purpose)

    # Get the Edges of the selected Region and commuting purpose
    region_graph_edges = get_edges(nodes, edges, region_code, comm_purpose)

    # Get the list of Bézier curves
    curves = region_graph_edges["curve"].to_list()

    # Get the administrative boundary of the selected Region
    region_admin_bound = region_admin_bounds[
        (region_admin_bounds["cod_reg"] == region_code)
    ].to_dict("records")

    # Draw the administrative boundary using hv.Path
    region_admin_bound_path = hv.Path(region_admin_bound)
    region_admin_bound_path.opts(color=ACCENT, line_width=1.0)

    # Build a Graph from Edges, Nodes and Bézier curves
    region_flow_graph = hv.Graph(
        (region_graph_edges.drop("curve", axis=1), region_graph_nodes, curves)
    )

    # Additional plot options
    region_flow_graph.opts(
        title="Incoming and outgoing commuting flows",
        xlabel="",
        ylabel="",
        node_color="white",
        node_hover_fill_color="magenta",
        node_line_color=ACCENT,
        node_size="size",
        node_marker="marker",
        edge_color="color",
        edge_hover_line_color="magenta",
        edge_line_width="width",
        inspection_policy="edges",
        tools=[flow_map_hover],
        hooks=[hook],
        frame_height=500,
    )

    # Compose the flow map
    flow_map = (
        hv.element.tiles.CartoLight()
        * region_admin_bound_path
        * region_flow_graph
    )

    return flow_map


# Load the edges as a Dataframe
@pn.cache
def get_edges_df():
    return pd.read_json(
        "https://cdn.awesome-panel.org/resources/commuting_flows_italy/edges.json",
        orient="split",
        dtype=EDGES_DTYPES,
    )
edges_df = get_edges_df()

# Load the nodes as a Dataframe
@pn.cache
def get_nodes_df():
    return pd.read_json(
        "https://cdn.awesome-panel.org/resources/commuting_flows_italy/nodes.json",
        orient="split",
        dtype=NODES_DTYPES,
    )

nodes_df = get_nodes_df()

# Load the italian regions as a Dataframe
@pn.cache
def get_region_admin_bounds_df():
    return pd.read_json(
        "https://cdn.awesome-panel.org/resources/commuting_flows_italy/italian_regions.json",
        orient="split",
        dtype=ITA_REGIONS_DTYPES,
    )
region_admin_bounds_df = get_region_admin_bounds_df()

# Region selector
region_options = dict(map(reversed, ITA_REGIONS.items()))
region_options = dict(sorted(region_options.items()))

region_select = pn.widgets.Select(
    name="Region:",
    options=region_options,
    sizing_mode="stretch_width",
)

# Toggle buttons to select the commuting purpose
purpose_select = pn.widgets.ToggleGroup(
    name="",
    options=COMMUTING_PURPOSE,
    behavior="radio",
    sizing_mode="stretch_width",
    button_type="primary", button_style="outline"
)

# Description pane
descr_pane = pn.pane.HTML(DASH_DESCR, styles={"text-align": "left"})

# Numeric indicator for incoming flows
incoming_numind_bind = pn.bind(
    get_incoming_numind,
    edges=edges_df,
    region_code=region_select,
    comm_purpose=purpose_select,
)

# Numeric indicator for outgoing flows
outgoing_numind_bind = pn.bind(
    get_outgoing_numind,
    edges=edges_df,
    region_code=region_select,
    comm_purpose=purpose_select,
)

# Numeric indicator for internal flows
internal_numind_bind = pn.bind(
    get_internal_numind,
    edges=edges_df,
    region_code=region_select,
    comm_purpose=purpose_select,
)

# Flow map
flowmap_bind = pn.bind(
    get_flow_map,
    nodes=nodes_df,
    edges=edges_df,
    region_admin_bounds=region_admin_bounds_df,
    region_code=region_select,
    comm_purpose=purpose_select,
)

# Compose the layout
layout = pn.Row(
    pn.Column(
        region_select,
        purpose_select,
        pn.Row(incoming_numind_bind, outgoing_numind_bind),
        internal_numind_bind,
        descr_pane,
        width=350,
    ),
    flowmap_bind,
)

pn.template.FastListTemplate(
    site="",
    logo="https://cdn.awesome-panel.org/resources/commuting_flows_italy/home_work.svg",
    title=DASH_TITLE,
    theme="default",
    theme_toggle=False,
    accent=ACCENT,
    neutral_color="white",
    main=[layout],
    main_max_width="1000px",
).servable()