File size: 15,040 Bytes
8c38616 48253d2 8c38616 48253d2 8c38616 48253d2 8c38616 48253d2 8c38616 48253d2 8c38616 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
"""
Source: https://awesome-panel.org/resources/commuting_flows_italian_regions/
"""
import holoviews as hv
import numpy as np
import pandas as pd
import panel as pn
from bokeh.models import HoverTool
from shapely.geometry import LineString
# Load the bokeh extension
hv.extension("bokeh")
# Set the sizing mode
pn.extension(sizing_mode="stretch_width")
# Dashboard title
DASH_TITLE = "Commuting flows between Italian Regions"
# Default colors for the dashboard
ACCENT = "#2f4f4f"
INCOMING_COLOR = "rgba(0, 108, 151, 0.75)"
OUTGOING_COLOR = "rgba(199, 81, 51, 0.75)"
INTERNAL_COLOR = "rgba(47, 79, 79, 0.55)"
# Default colors for indicators
DEFAULT_COLOR = "white"
TITLE_SIZE = "18pt"
FONT_SIZE = "20pt"
# Min/Max node size
MIN_PT_SIZE = 7
MAX_PT_SIZE = 10
# Min/Max curve width
MIN_LW = 1
MAX_LW = 10
# Dataframes dtypes
ITA_REGIONS_DTYPES = {
"cod_reg": "uint8",
"den_reg": "object",
"x": "object",
"y": "object",
}
NODES_DTYPES = {
"cod_reg": "uint8",
"x": "float64",
"y": "float64",
}
EDGES_DTYPES = {
"motivo": "object",
"interno": "bool",
"flussi": "uint32",
"reg_o": "uint8",
"reg_d": "uint8",
"x_o": "float64",
"y_o": "float64",
"x_d": "float64",
"y_d": "float64",
}
# Dictionary that maps region code to its name
ITA_REGIONS = {
1: "Piemonte",
2: "Valle d'Aosta/Vallée d'Aoste",
3: "Lombardia",
4: "Trentino-Alto Adige/Südtirol",
5: "Veneto",
6: "Friuli-Venezia Giulia",
7: "Liguria",
8: "Emilia-Romagna",
9: "Toscana",
10: "Umbria",
11: "Marche",
12: "Lazio",
13: "Abruzzo",
14: "Molise",
15: "Campania",
16: "Puglia",
17: "Basilicata",
18: "Calabria",
19: "Sicilia",
20: "Sardegna",
}
# Dictionary of options (Label/option) for commuting purpose
COMMUTING_PURPOSE = {
"Work": "Lavoro",
"Study": "Studio",
"Total": "Totale",
}
# Dashboard description
DASH_DESCR = f"""
<div>
<hr />
<p>A Panel dashboard showing <b style="color:{INCOMING_COLOR};">incoming</b>
and <b style="color:{OUTGOING_COLOR};">outgoing</b> commuting flows
for work and study between Italian Regions.</p>
<p>The width of the curves reflects the magnitude of the flows.</p>
<p>
<a href="https://www.istat.it/it/archivio/139381" target="_blank">Commuting data</a> from the
15th Population and Housing Census (Istat, 2011).
</p>
<p>
<a href="https://www.istat.it/it/archivio/222527" target="_blank">Administrative boundaries</a> from
ISTAT.
</p>
<hr />
</div>
"""
CSS_FIX = """
:host(.outline) .bk-btn.bk-btn-primary.bk-active, :host(.outline) .bk-btn.bk-btn-primary:active {
color: var(--foreground-on-accent-rest) !important;
}
"""
if not CSS_FIX in pn.config.raw_css:
pn.config.raw_css.append(CSS_FIX)
def get_incoming_numind(edges, region_code, comm_purpose):
"""
Returns the total incoming commuters to the selected Region.
"""
# Get the value of incoming commuters
if comm_purpose == "Totale":
query = f"reg_d == {region_code} & interno == 0"
else:
query = f"(reg_d == {region_code} & motivo == '{comm_purpose}' & interno == 0)"
flows = edges.query(query)["flussi"].sum()
return pn.indicators.Number(
name="Incoming",
value=flows,
default_color=DEFAULT_COLOR,
styles={"background": INCOMING_COLOR, "padding": "5px 10px 5px 10px", "border-radius": "5px"},
title_size=TITLE_SIZE,
font_size=FONT_SIZE,
sizing_mode="stretch_width",
align="center",
css_classes=["center_number"],
)
def get_outgoing_numind(edges, region_code, comm_purpose):
"""
Returns the outgoing commuters from
the selected Region.
"""
# Get the value of outgoing commuters
if comm_purpose == "Totale":
query = f"reg_o == {region_code} & interno == 0"
else:
query = f"(reg_o == {region_code} & motivo == '{comm_purpose}' & interno == 0)"
flows = edges.query(query)["flussi"].sum()
return pn.indicators.Number(
name="Outgoing",
value=flows,
default_color=DEFAULT_COLOR,
styles={"background": OUTGOING_COLOR, "padding": "5px 10px 5px 10px", "border-radius": "5px"},
title_size=TITLE_SIZE,
font_size=FONT_SIZE,
sizing_mode="stretch_width",
align="center",
css_classes=["center_number"],
)
def get_internal_numind(edges, region_code, comm_purpose):
"""
Returns the number of internal commuters of
the selected Region.
"""
# Get the value of internal commuters
if comm_purpose == "Totale":
query = f"reg_o == {region_code} & interno == 1"
else:
query = f"(reg_o == {region_code} & motivo == '{comm_purpose}' & interno == 1)"
flows = edges.query(query)["flussi"].sum()
return pn.indicators.Number(
name="Internal mobility",
value=flows,
default_color=DEFAULT_COLOR,
styles={"background": INTERNAL_COLOR, "padding": "5px 10px 5px 10px", "border-radius": "5px"},
title_size=TITLE_SIZE,
font_size=FONT_SIZE,
sizing_mode="stretch_width",
align="center",
css_classes=["center_number"],
)
def filter_edges(edges, region_code, comm_purpose):
"""
This function filters the rows of the edges for
the selected Region and commuting purpose.
"""
if comm_purpose == "Totale":
query = f"(reg_o == {region_code} & interno == 0) |"
query += f" (reg_d == {region_code} & interno == 0)"
else:
query = f"(reg_o == {region_code} & motivo == '{comm_purpose}' & interno == 0) |"
query += f" (reg_d == {region_code} & motivo == '{comm_purpose}' & interno == 0)"
return edges.query(query)
def get_nodes(nodes, edges, region_code, comm_purpose):
"""
Get the graph's nodes for the selected Region and commuting purpose
"""
# Filter the edges by Region and commuting purpose
filt_edges = filter_edges(edges, region_code, comm_purpose)
# Find the unique values of region codes
region_codes = np.unique(filt_edges[["reg_o", "reg_d"]].values)
# Filter the nodes
nodes = nodes[nodes["cod_reg"].isin(region_codes)]
# Reoder the columns for hv.Graph
nodes = nodes[["x", "y", "cod_reg"]]
# Assign the node size
nodes["size"] = np.where(
nodes["cod_reg"] == region_code, MAX_PT_SIZE, MIN_PT_SIZE
)
# Assigns a marker to the nodes
nodes["marker"] = np.where(
nodes["cod_reg"] == region_code, "square", "circle"
)
return nodes
def get_bezier_curve(x_o, y_o, x_d, y_d, steps=25):
"""
Draw a Bézier curve defined by a start point, endpoint and a control points
Source: https://stackoverflow.com/questions/69804595/trying-to-make-a-bezier-curve-on-pygame-library
"""
# Generate the O/D linestring
od_line = LineString([(x_o, y_o), (x_d, y_d)])
# Calculate the offset distance of the control point
offset_distance = od_line.length / 2
# Create a line parallel to the original at the offset distance
offset_pline = od_line.parallel_offset(offset_distance, "left")
# Get the XY coodinates of the control point
ctrl_x = offset_pline.centroid.x
ctrl_y = offset_pline.centroid.y
# Calculate the XY coordinates of the Bézier curve
t = np.array([i * 1 / steps for i in range(0, steps + 1)])
x_coords = x_o * (1 - t) ** 2 + 2 * (1 - t) * t * ctrl_x + x_d * t**2
y_coords = y_o * (1 - t) ** 2 + 2 * (1 - t) * t * ctrl_y + y_d * t**2
return (x_coords, y_coords)
def get_edge_width(flow, min_flow, max_flow):
"""
This function calculates the width of the curves
according to the magnitude of the flow.
"""
return MIN_LW + np.power(flow - min_flow, 0.57) * (
MAX_LW - MIN_LW
) / np.power(max_flow - min_flow, 0.57)
def get_edges(nodes, edges, region_code, comm_purpose):
"""
Get the graph's edges for the selected Region and commuting purpose
"""
# Filter the edges by Region and commuting purpose
filt_edges = filter_edges(edges, region_code, comm_purpose).copy()
# Aggregate the flows by Region of origin and destination
if comm_purpose == "Totale":
filt_edges = (
filt_edges.groupby(["reg_o", "reg_d"])
.agg(
motivo=("motivo", "first"),
interno=("interno", "first"),
flussi=("flussi", "sum"),
)
.reset_index()
)
# Assign Region names
filt_edges.loc[:,"den_reg_o"] = filt_edges["reg_o"].map(ITA_REGIONS)
filt_edges.loc[:,"den_reg_d"] = filt_edges["reg_d"].map(ITA_REGIONS)
# Add xy coordinates of origin
filt_edges = filt_edges.merge(
nodes.add_suffix("_o"), left_on="reg_o", right_on="cod_reg_o"
)
# Add xy coordinates of destination
filt_edges = filt_edges.merge(
nodes.add_suffix("_d"), left_on="reg_d", right_on="cod_reg_d"
)
# Get the Bézier curve
filt_edges["curve"] = filt_edges.apply(
lambda row: get_bezier_curve(
row["x_o"], row["y_o"], row["x_d"], row["y_d"]
),
axis=1,
)
# Get the minimum/maximum flow
min_flow = filt_edges["flussi"].min()
max_flow = filt_edges["flussi"].max()
# Calculate the curve width
filt_edges["width"] = filt_edges.apply(
lambda row: get_edge_width(
row["flussi"],
min_flow,
max_flow,
),
axis=1,
)
# Assigns the color to the incoming/outgoing edges
filt_edges["color"] = np.where(
filt_edges["reg_d"] == region_code, INCOMING_COLOR, OUTGOING_COLOR
)
filt_edges = filt_edges.sort_values(by="flussi")
return filt_edges
def get_flow_map(nodes, edges, region_admin_bounds, region_code, comm_purpose):
"""
Returns a Graph showing incoming and outgoing commuting flows
for the selected Region and commuting purpose.
"""
def hook(plot, element):
"""
Custom hook for disabling x/y tick lines/labels
"""
plot.state.xaxis.major_tick_line_color = None
plot.state.xaxis.minor_tick_line_color = None
plot.state.xaxis.major_label_text_font_size = "0pt"
plot.state.yaxis.major_tick_line_color = None
plot.state.yaxis.minor_tick_line_color = None
plot.state.yaxis.major_label_text_font_size = "0pt"
# Define a custom Hover tool
flow_map_hover = HoverTool(
tooltips=[
("Origin", "@den_reg_o"),
("Destination", "@den_reg_d"),
("Commuters", "@flussi"),
]
)
# Get the Nodes of the selected Region and commuting purpose
region_graph_nodes = get_nodes(nodes, edges, region_code, comm_purpose)
# Get the Edges of the selected Region and commuting purpose
region_graph_edges = get_edges(nodes, edges, region_code, comm_purpose)
# Get the list of Bézier curves
curves = region_graph_edges["curve"].to_list()
# Get the administrative boundary of the selected Region
region_admin_bound = region_admin_bounds[
(region_admin_bounds["cod_reg"] == region_code)
].to_dict("records")
# Draw the administrative boundary using hv.Path
region_admin_bound_path = hv.Path(region_admin_bound)
region_admin_bound_path.opts(color=ACCENT, line_width=1.0)
# Build a Graph from Edges, Nodes and Bézier curves
region_flow_graph = hv.Graph(
(region_graph_edges.drop("curve", axis=1), region_graph_nodes, curves)
)
# Additional plot options
region_flow_graph.opts(
title="Incoming and outgoing commuting flows",
xlabel="",
ylabel="",
node_color="white",
node_hover_fill_color="magenta",
node_line_color=ACCENT,
node_size="size",
node_marker="marker",
edge_color="color",
edge_hover_line_color="magenta",
edge_line_width="width",
inspection_policy="edges",
tools=[flow_map_hover],
hooks=[hook],
frame_height=500,
)
# Compose the flow map
flow_map = (
hv.element.tiles.CartoLight()
* region_admin_bound_path
* region_flow_graph
)
return flow_map
# Load the edges as a Dataframe
@pn.cache
def get_edges_df():
return pd.read_json(
"https://cdn.awesome-panel.org/resources/commuting_flows_italy/edges.json",
orient="split",
dtype=EDGES_DTYPES,
)
edges_df = get_edges_df()
# Load the nodes as a Dataframe
@pn.cache
def get_nodes_df():
return pd.read_json(
"https://cdn.awesome-panel.org/resources/commuting_flows_italy/nodes.json",
orient="split",
dtype=NODES_DTYPES,
)
nodes_df = get_nodes_df()
# Load the italian regions as a Dataframe
@pn.cache
def get_region_admin_bounds_df():
return pd.read_json(
"https://cdn.awesome-panel.org/resources/commuting_flows_italy/italian_regions.json",
orient="split",
dtype=ITA_REGIONS_DTYPES,
)
region_admin_bounds_df = get_region_admin_bounds_df()
# Region selector
region_options = dict(map(reversed, ITA_REGIONS.items()))
region_options = dict(sorted(region_options.items()))
region_select = pn.widgets.Select(
name="Region:",
options=region_options,
sizing_mode="stretch_width",
)
# Toggle buttons to select the commuting purpose
purpose_select = pn.widgets.ToggleGroup(
name="",
options=COMMUTING_PURPOSE,
behavior="radio",
sizing_mode="stretch_width",
button_type="primary", button_style="outline"
)
# Description pane
descr_pane = pn.pane.HTML(DASH_DESCR, styles={"text-align": "left"})
# Numeric indicator for incoming flows
incoming_numind_bind = pn.bind(
get_incoming_numind,
edges=edges_df,
region_code=region_select,
comm_purpose=purpose_select,
)
# Numeric indicator for outgoing flows
outgoing_numind_bind = pn.bind(
get_outgoing_numind,
edges=edges_df,
region_code=region_select,
comm_purpose=purpose_select,
)
# Numeric indicator for internal flows
internal_numind_bind = pn.bind(
get_internal_numind,
edges=edges_df,
region_code=region_select,
comm_purpose=purpose_select,
)
# Flow map
flowmap_bind = pn.bind(
get_flow_map,
nodes=nodes_df,
edges=edges_df,
region_admin_bounds=region_admin_bounds_df,
region_code=region_select,
comm_purpose=purpose_select,
)
# Compose the layout
layout = pn.Row(
pn.Column(
region_select,
purpose_select,
pn.Row(incoming_numind_bind, outgoing_numind_bind),
internal_numind_bind,
descr_pane,
width=350,
),
flowmap_bind,
)
pn.template.FastListTemplate(
site="",
logo="https://cdn.awesome-panel.org/resources/commuting_flows_italy/home_work.svg",
title=DASH_TITLE,
theme="default",
theme_toggle=False,
accent=ACCENT,
neutral_color="white",
main=[layout],
main_max_width="1000px",
).servable() |