Commit
·
3b16b97
1
Parent(s):
2e6eea6
Update app.py
Browse files
app.py
CHANGED
@@ -19,6 +19,8 @@ from sgm.inference.helpers import embed_watermark
|
|
19 |
from sgm.util import default, instantiate_from_config
|
20 |
from huggingface_hub import hf_hub_download
|
21 |
|
|
|
|
|
22 |
num_frames = 25
|
23 |
num_steps = 30
|
24 |
model_config = "scripts/sampling/configs/svd_xt.yaml"
|
@@ -30,38 +32,6 @@ css = '''
|
|
30 |
.gradio-container{max-width:850px !important}
|
31 |
'''
|
32 |
|
33 |
-
def load_model(
|
34 |
-
config: str,
|
35 |
-
device: str,
|
36 |
-
num_frames: int,
|
37 |
-
num_steps: int,
|
38 |
-
):
|
39 |
-
config = OmegaConf.load(config)
|
40 |
-
if device == "cuda":
|
41 |
-
config.model.params.conditioner_config.params.emb_models[
|
42 |
-
0
|
43 |
-
].params.open_clip_embedding_config.params.init_device = device
|
44 |
-
|
45 |
-
config.model.params.sampler_config.params.num_steps = num_steps
|
46 |
-
config.model.params.sampler_config.params.guider_config.params.num_frames = (
|
47 |
-
num_frames
|
48 |
-
)
|
49 |
-
if device == "cuda":
|
50 |
-
with torch.device(device):
|
51 |
-
model = instantiate_from_config(config.model).to(device).eval()
|
52 |
-
else:
|
53 |
-
model = instantiate_from_config(config.model).to(device).eval()
|
54 |
-
|
55 |
-
filter = DeepFloydDataFiltering(verbose=False, device=device)
|
56 |
-
return model, filter
|
57 |
-
|
58 |
-
model, filter = load_model(
|
59 |
-
model_config,
|
60 |
-
device,
|
61 |
-
num_frames,
|
62 |
-
num_steps,
|
63 |
-
)
|
64 |
-
|
65 |
def sample(
|
66 |
input_path: str,
|
67 |
num_frames: Optional[int] = 25,
|
@@ -74,139 +44,8 @@ def sample(
|
|
74 |
decoding_t: int = 7, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
75 |
):
|
76 |
output_folder = str(uuid.uuid4())
|
77 |
-
|
78 |
-
|
79 |
-
all_img_paths = []
|
80 |
-
if path.is_file():
|
81 |
-
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
|
82 |
-
all_img_paths = [input_path]
|
83 |
-
else:
|
84 |
-
raise ValueError("Path is not valid image file.")
|
85 |
-
elif path.is_dir():
|
86 |
-
all_img_paths = sorted(
|
87 |
-
[
|
88 |
-
f
|
89 |
-
for f in path.iterdir()
|
90 |
-
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
|
91 |
-
]
|
92 |
-
)
|
93 |
-
if len(all_img_paths) == 0:
|
94 |
-
raise ValueError("Folder does not contain any images.")
|
95 |
-
else:
|
96 |
-
raise ValueError
|
97 |
-
|
98 |
-
for input_img_path in all_img_paths:
|
99 |
-
with Image.open(input_img_path) as image:
|
100 |
-
if image.mode == "RGBA":
|
101 |
-
image = image.convert("RGB")
|
102 |
-
w, h = image.size
|
103 |
-
|
104 |
-
if h % 64 != 0 or w % 64 != 0:
|
105 |
-
width, height = map(lambda x: x - x % 64, (w, h))
|
106 |
-
image = image.resize((width, height))
|
107 |
-
print(
|
108 |
-
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
|
109 |
-
)
|
110 |
-
|
111 |
-
image = ToTensor()(image)
|
112 |
-
image = image * 2.0 - 1.0
|
113 |
-
|
114 |
-
image = image.unsqueeze(0).to(device)
|
115 |
-
H, W = image.shape[2:]
|
116 |
-
assert image.shape[1] == 3
|
117 |
-
F = 8
|
118 |
-
C = 4
|
119 |
-
shape = (num_frames, C, H // F, W // F)
|
120 |
-
if (H, W) != (576, 1024):
|
121 |
-
print(
|
122 |
-
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
|
123 |
-
)
|
124 |
-
if motion_bucket_id > 255:
|
125 |
-
print(
|
126 |
-
"WARNING: High motion bucket! This may lead to suboptimal performance."
|
127 |
-
)
|
128 |
-
|
129 |
-
if fps_id < 5:
|
130 |
-
print("WARNING: Small fps value! This may lead to suboptimal performance.")
|
131 |
-
|
132 |
-
if fps_id > 30:
|
133 |
-
print("WARNING: Large fps value! This may lead to suboptimal performance.")
|
134 |
-
|
135 |
-
value_dict = {}
|
136 |
-
value_dict["motion_bucket_id"] = motion_bucket_id
|
137 |
-
value_dict["fps_id"] = fps_id
|
138 |
-
value_dict["cond_aug"] = cond_aug
|
139 |
-
value_dict["cond_frames_without_noise"] = image
|
140 |
-
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
|
141 |
-
value_dict["cond_aug"] = cond_aug
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
with torch.no_grad():
|
146 |
-
with torch.autocast(device):
|
147 |
-
batch, batch_uc = get_batch(
|
148 |
-
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
149 |
-
value_dict,
|
150 |
-
[1, num_frames],
|
151 |
-
T=num_frames,
|
152 |
-
device=device,
|
153 |
-
)
|
154 |
-
c, uc = model.conditioner.get_unconditional_conditioning(
|
155 |
-
batch,
|
156 |
-
batch_uc=batch_uc,
|
157 |
-
force_uc_zero_embeddings=[
|
158 |
-
"cond_frames",
|
159 |
-
"cond_frames_without_noise",
|
160 |
-
],
|
161 |
-
)
|
162 |
-
|
163 |
-
for k in ["crossattn", "concat"]:
|
164 |
-
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
|
165 |
-
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
|
166 |
-
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
|
167 |
-
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
|
168 |
-
|
169 |
-
randn = torch.randn(shape, device=device)
|
170 |
-
|
171 |
-
additional_model_inputs = {}
|
172 |
-
additional_model_inputs["image_only_indicator"] = torch.zeros(
|
173 |
-
2, num_frames
|
174 |
-
).to(device)
|
175 |
-
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
|
176 |
-
|
177 |
-
def denoiser(input, sigma, c):
|
178 |
-
return model.denoiser(
|
179 |
-
model.model, input, sigma, c, **additional_model_inputs
|
180 |
-
)
|
181 |
-
|
182 |
-
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
|
183 |
-
model.en_and_decode_n_samples_a_time = decoding_t
|
184 |
-
samples_x = model.decode_first_stage(samples_z)
|
185 |
-
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
186 |
-
|
187 |
-
os.makedirs(output_folder, exist_ok=True)
|
188 |
-
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
189 |
-
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
190 |
-
writer = cv2.VideoWriter(
|
191 |
-
video_path,
|
192 |
-
cv2.VideoWriter_fourcc(*"MP4V"),
|
193 |
-
fps_id + 1,
|
194 |
-
(samples.shape[-1], samples.shape[-2]),
|
195 |
-
)
|
196 |
-
|
197 |
-
samples = embed_watermark(samples)
|
198 |
-
samples = filter(samples)
|
199 |
-
vid = (
|
200 |
-
(rearrange(samples, "t c h w -> t h w c") * 255)
|
201 |
-
.cpu()
|
202 |
-
.numpy()
|
203 |
-
.astype(np.uint8)
|
204 |
-
)
|
205 |
-
for frame in vid:
|
206 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
207 |
-
writer.write(frame)
|
208 |
-
writer.release()
|
209 |
-
return video_path
|
210 |
|
211 |
def get_unique_embedder_keys_from_conditioner(conditioner):
|
212 |
return list(set([x.input_key for x in conditioner.embedders]))
|
|
|
19 |
from sgm.util import default, instantiate_from_config
|
20 |
from huggingface_hub import hf_hub_download
|
21 |
|
22 |
+
from simple_video_sample import sample
|
23 |
+
|
24 |
num_frames = 25
|
25 |
num_steps = 30
|
26 |
model_config = "scripts/sampling/configs/svd_xt.yaml"
|
|
|
32 |
.gradio-container{max-width:850px !important}
|
33 |
'''
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def sample(
|
36 |
input_path: str,
|
37 |
num_frames: Optional[int] = 25,
|
|
|
44 |
decoding_t: int = 7, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
45 |
):
|
46 |
output_folder = str(uuid.uuid4())
|
47 |
+
sample(input_path, version, output_folder, decoding_t)
|
48 |
+
return f"{output_folder}/000000.mp4"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
def get_unique_embedder_keys_from_conditioner(conditioner):
|
51 |
return list(set([x.input_key for x in conditioner.embedders]))
|