Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -23,6 +23,43 @@ def get_db_firestore():
|
|
23 |
db = get_db_firestore()
|
24 |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def transcribe(audio):
|
27 |
text = asr(audio)["text"]
|
28 |
return text
|
@@ -63,8 +100,19 @@ def selectall(text):
|
|
63 |
doclist += r
|
64 |
return doclist
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
|
|
68 |
with demo:
|
69 |
#audio_file = gr.Audio(type="filepath")
|
70 |
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
|
@@ -72,91 +120,35 @@ with demo:
|
|
72 |
label = gr.Label()
|
73 |
saved = gr.Textbox()
|
74 |
savedAll = gr.Textbox()
|
|
|
75 |
|
76 |
b1 = gr.Button("Recognize Speech")
|
77 |
b2 = gr.Button("Classify Sentiment")
|
78 |
b3 = gr.Button("Save Speech to Text")
|
79 |
b4 = gr.Button("Retrieve All")
|
|
|
80 |
|
81 |
b1.click(speech_to_text, inputs=audio_file, outputs=text)
|
82 |
b2.click(text_to_sentiment, inputs=text, outputs=label)
|
83 |
b3.click(upsert, inputs=text, outputs=saved)
|
84 |
b4.click(selectall, inputs=text, outputs=savedAll)
|
|
|
85 |
|
86 |
demo.launch(share=True)
|
87 |
|
88 |
|
89 |
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
# "es/mai/tacotron2-DDC",
|
105 |
-
"fr/mai/tacotron2-DDC",
|
106 |
-
"zh-CN/baker/tacotron2-DDC-GST",
|
107 |
-
"nl/mai/tacotron2-DDC",
|
108 |
-
"de/thorsten/tacotron2-DCA",
|
109 |
-
# "ja/kokoro/tacotron2-DDC",
|
110 |
-
]
|
111 |
-
MODELS = {}
|
112 |
-
|
113 |
-
manager = ModelManager()
|
114 |
-
|
115 |
-
for MODEL_NAME in MODEL_NAMES:
|
116 |
-
print(f"downloading {MODEL_NAME}")
|
117 |
-
model_path, config_path, model_item = manager.download_model(f"tts_models/{MODEL_NAME}")
|
118 |
-
vocoder_name: Optional[str] = model_item["default_vocoder"]
|
119 |
-
vocoder_path = None
|
120 |
-
vocoder_config_path = None
|
121 |
-
if vocoder_name is not None:
|
122 |
-
vocoder_path, vocoder_config_path, _ = manager.download_model(vocoder_name)
|
123 |
-
|
124 |
-
synthesizer = Synthesizer(
|
125 |
-
model_path, config_path, None, vocoder_path, vocoder_config_path,
|
126 |
-
)
|
127 |
-
MODELS[MODEL_NAME] = synthesizer
|
128 |
-
|
129 |
-
|
130 |
-
def tts(text: str, model_name: str):
|
131 |
-
print(text, model_name)
|
132 |
-
synthesizer = MODELS.get(model_name, None)
|
133 |
-
if synthesizer is None:
|
134 |
-
raise NameError("model not found")
|
135 |
-
wavs = synthesizer.tts(text)
|
136 |
-
# output = (synthesizer.output_sample_rate, np.array(wavs))
|
137 |
-
# return output
|
138 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
|
139 |
-
synthesizer.save_wav(wavs, fp)
|
140 |
-
return fp.name
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
iface = gr.Interface(
|
145 |
-
fn=tts,
|
146 |
-
inputs=[
|
147 |
-
gr.inputs.Textbox(
|
148 |
-
label="Input",
|
149 |
-
default="Hello, how are you?",
|
150 |
-
),
|
151 |
-
gr.inputs.Radio(
|
152 |
-
label="Pick a TTS Model",
|
153 |
-
choices=MODEL_NAMES,
|
154 |
-
),
|
155 |
-
],
|
156 |
-
outputs=gr.outputs.Audio(label="Output"),
|
157 |
-
title="🐸💬 - Coqui TTS",
|
158 |
-
theme="huggingface",
|
159 |
-
description="🐸💬 - a deep learning toolkit for Text-to-Speech, battle-tested in research and production",
|
160 |
-
article="more info at https://github.com/coqui-ai/TTS",
|
161 |
-
)
|
162 |
-
iface.launch()
|
|
|
23 |
db = get_db_firestore()
|
24 |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
25 |
|
26 |
+
|
27 |
+
MODEL_NAMES = [
|
28 |
+
# "en/ek1/tacotron2",
|
29 |
+
"en/ljspeech/tacotron2-DDC",
|
30 |
+
# "en/ljspeech/tacotron2-DDC_ph",
|
31 |
+
# "en/ljspeech/glow-tts",
|
32 |
+
# "en/ljspeech/tacotron2-DCA",
|
33 |
+
# "en/ljspeech/speedy-speech-wn",
|
34 |
+
# "en/ljspeech/vits",
|
35 |
+
# "en/vctk/sc-glow-tts",
|
36 |
+
# "en/vctk/vits",
|
37 |
+
# "en/sam/tacotron-DDC",
|
38 |
+
# "es/mai/tacotron2-DDC",
|
39 |
+
"fr/mai/tacotron2-DDC",
|
40 |
+
"zh-CN/baker/tacotron2-DDC-GST",
|
41 |
+
"nl/mai/tacotron2-DDC",
|
42 |
+
"de/thorsten/tacotron2-DCA",
|
43 |
+
# "ja/kokoro/tacotron2-DDC",
|
44 |
+
]
|
45 |
+
MODELS = {}
|
46 |
+
manager = ModelManager()
|
47 |
+
for MODEL_NAME in MODEL_NAMES:
|
48 |
+
print(f"downloading {MODEL_NAME}")
|
49 |
+
model_path, config_path, model_item = manager.download_model(f"tts_models/{MODEL_NAME}")
|
50 |
+
vocoder_name: Optional[str] = model_item["default_vocoder"]
|
51 |
+
vocoder_path = None
|
52 |
+
vocoder_config_path = None
|
53 |
+
if vocoder_name is not None:
|
54 |
+
vocoder_path, vocoder_config_path, _ = manager.download_model(vocoder_name)
|
55 |
+
|
56 |
+
synthesizer = Synthesizer(
|
57 |
+
model_path, config_path, None, vocoder_path, vocoder_config_path,
|
58 |
+
)
|
59 |
+
MODELS[MODEL_NAME] = synthesizer
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
def transcribe(audio):
|
64 |
text = asr(audio)["text"]
|
65 |
return text
|
|
|
100 |
doclist += r
|
101 |
return doclist
|
102 |
|
103 |
+
def tts(text: str, model_name: str):
|
104 |
+
print(text, model_name)
|
105 |
+
synthesizer = MODELS.get(model_name, None)
|
106 |
+
if synthesizer is None:
|
107 |
+
raise NameError("model not found")
|
108 |
+
wavs = synthesizer.tts(text)
|
109 |
+
# output = (synthesizer.output_sample_rate, np.array(wavs))
|
110 |
+
# return output
|
111 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
|
112 |
+
synthesizer.save_wav(wavs, fp)
|
113 |
+
return fp.name
|
114 |
|
115 |
+
demo = gr.Blocks()
|
116 |
with demo:
|
117 |
#audio_file = gr.Audio(type="filepath")
|
118 |
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
|
|
|
120 |
label = gr.Label()
|
121 |
saved = gr.Textbox()
|
122 |
savedAll = gr.Textbox()
|
123 |
+
TTSchoice = gr.inputs.Radio( label="Pick a TTS Model", choices=MODEL_NAMES, )
|
124 |
|
125 |
b1 = gr.Button("Recognize Speech")
|
126 |
b2 = gr.Button("Classify Sentiment")
|
127 |
b3 = gr.Button("Save Speech to Text")
|
128 |
b4 = gr.Button("Retrieve All")
|
129 |
+
b5 = gr.Button("Read It Back Aloud")
|
130 |
|
131 |
b1.click(speech_to_text, inputs=audio_file, outputs=text)
|
132 |
b2.click(text_to_sentiment, inputs=text, outputs=label)
|
133 |
b3.click(upsert, inputs=text, outputs=saved)
|
134 |
b4.click(selectall, inputs=text, outputs=savedAll)
|
135 |
+
b5.click(tts, inputs=text,TTSchoice, outputs=Audio(label="Output"))
|
136 |
|
137 |
demo.launch(share=True)
|
138 |
|
139 |
|
140 |
|
141 |
|
142 |
+
#iface = gr.Interface(
|
143 |
+
# fn=tts,
|
144 |
+
# inputs=[
|
145 |
+
# gr.inputs.Textbox( label="Input", default="Hello, how are you?", ),
|
146 |
+
# gr.inputs.Radio( label="Pick a TTS Model", choices=MODEL_NAMES, ),
|
147 |
+
# ],
|
148 |
+
# outputs=gr.outputs.Audio(label="Output"),
|
149 |
+
# title="🐸💬 - Coqui TTS",
|
150 |
+
# theme="huggingface",
|
151 |
+
# description="🐸💬 - a deep learning toolkit for Text-to-Speech, battle-tested in research and production",
|
152 |
+
# article="more info at https://github.com/coqui-ai/TTS",
|
153 |
+
#)
|
154 |
+
#iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|