Spaces:
Runtime error
Runtime error
import streamlit as st | |
import firebase_admin | |
from firebase_admin import credentials | |
from firebase_admin import firestore | |
import datetime | |
from transformers import pipeline | |
import gradio as gr | |
import tempfile | |
from typing import Optional | |
import numpy as np | |
from TTS.utils.manage import ModelManager | |
from TTS.utils.synthesizer import Synthesizer | |
def get_db_firestore(): | |
cred = credentials.Certificate('test.json') | |
firebase_admin.initialize_app(cred, {'projectId': u'clinical-nlp-b9117',}) | |
db = firestore.client() | |
return db | |
db = get_db_firestore() | |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") | |
MODEL_NAMES = [ | |
# "en/ek1/tacotron2", | |
"en/ljspeech/tacotron2-DDC", | |
# "en/ljspeech/tacotron2-DDC_ph", | |
# "en/ljspeech/glow-tts", | |
# "en/ljspeech/tacotron2-DCA", | |
# "en/ljspeech/speedy-speech-wn", | |
# "en/ljspeech/vits", | |
# "en/vctk/sc-glow-tts", | |
# "en/vctk/vits", | |
# "en/sam/tacotron-DDC", | |
# "es/mai/tacotron2-DDC", | |
"fr/mai/tacotron2-DDC", | |
"zh-CN/baker/tacotron2-DDC-GST", | |
"nl/mai/tacotron2-DDC", | |
"de/thorsten/tacotron2-DCA", | |
# "ja/kokoro/tacotron2-DDC", | |
] | |
MODELS = {} | |
manager = ModelManager() | |
for MODEL_NAME in MODEL_NAMES: | |
print(f"downloading {MODEL_NAME}") | |
model_path, config_path, model_item = manager.download_model(f"tts_models/{MODEL_NAME}") | |
vocoder_name: Optional[str] = model_item["default_vocoder"] | |
vocoder_path = None | |
vocoder_config_path = None | |
if vocoder_name is not None: | |
vocoder_path, vocoder_config_path, _ = manager.download_model(vocoder_name) | |
synthesizer = Synthesizer( | |
model_path, config_path, None, vocoder_path, vocoder_config_path, | |
) | |
MODELS[MODEL_NAME] = synthesizer | |
def transcribe(audio): | |
text = asr(audio)["text"] | |
return text | |
classifier = pipeline("text-classification") | |
def speech_to_text(speech): | |
text = asr(speech)["text"] | |
return text | |
def text_to_sentiment(text): | |
sentiment = classifier(text)[0]["label"] | |
return sentiment | |
def upsert(text): | |
date_time =str(datetime.datetime.today()) | |
doc_ref = db.collection('Text2SpeechSentimentSave').document(date_time) | |
doc_ref.set({u'firefield': 'Recognize Speech', u'first': 'https://huggingface.co/spaces/awacke1/Text2SpeechSentimentSave', u'last': text, u'born': date_time,}) | |
saved = select('Text2SpeechSentimentSave', date_time) | |
# check it here: https://console.firebase.google.com/u/0/project/clinical-nlp-b9117/firestore/data/~2FStreamlitSpaces | |
return saved | |
def select(collection, document): | |
doc_ref = db.collection(collection).document(document) | |
doc = doc_ref.get() | |
docid = ("The id is: ", doc.id) | |
contents = ("The contents are: ", doc.to_dict()) | |
return contents | |
def selectall(text): | |
docs = db.collection('Text2SpeechSentimentSave').stream() | |
doclist='' | |
for doc in docs: | |
#docid=doc.id | |
#dict=doc.to_dict() | |
#doclist+=doc.to_dict() | |
r=(f'{doc.id} => {doc.to_dict()}') | |
doclist += r | |
return doclist | |
def tts(text: str, model_name: str): | |
print(text, model_name) | |
synthesizer = MODELS.get(model_name, None) | |
if synthesizer is None: | |
raise NameError("model not found") | |
wavs = synthesizer.tts(text) | |
# output = (synthesizer.output_sample_rate, np.array(wavs)) | |
# return output | |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: | |
synthesizer.save_wav(wavs, fp) | |
return fp.name | |
demo = gr.Blocks() | |
with demo: | |
#audio_file = gr.Audio(type="filepath") | |
audio_file = gr.inputs.Audio(source="microphone", type="filepath") | |
text = gr.Textbox() | |
label = gr.Label() | |
saved = gr.Textbox() | |
savedAll = gr.Textbox() | |
TTSchoice = gr.inputs.Radio( label="Pick a TTS Model", choices=MODEL_NAMES, ) | |
audio_file_out = gr.Audio(label="Generated Speech") | |
b1 = gr.Button("Recognize Speech") | |
b2 = gr.Button("Classify Sentiment") | |
b3 = gr.Button("Save Speech to Text") | |
b4 = gr.Button("Retrieve All") | |
b5 = gr.Button("Read It Back Aloud") | |
b1.click(speech_to_text, inputs=audio_file, outputs=text) | |
b2.click(text_to_sentiment, inputs=text, outputs=label) | |
b3.click(upsert, inputs=text, outputs=saved) | |
b4.click(selectall, inputs=text, outputs=savedAll) | |
b5.click(tts, inputs={text,TTSchoice}, outputs=audio_file_out) | |
demo.launch(share=True) | |
#iface = gr.Interface( | |
# fn=tts, | |
# inputs=[ | |
# gr.inputs.Textbox( label="Input", default="Hello, how are you?", ), | |
# gr.inputs.Radio( label="Pick a TTS Model", choices=MODEL_NAMES, ), | |
# ], | |
# outputs=gr.outputs.Audio(label="Output"), | |
# title="🐸💬 - Coqui TTS", | |
# theme="huggingface", | |
# description="🐸💬 - a deep learning toolkit for Text-to-Speech, battle-tested in research and production", | |
# article="more info at https://github.com/coqui-ai/TTS", | |
#) | |
#iface.launch() |