Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
# Load the largest hospitals data | |
data = [ | |
{"Hospital": "Texas Health Presbyterian Hospital Dallas", "City": "Dallas", "State": "TX", "Beds": 898}, | |
{"Hospital": "Cedars-Sinai Medical Center", "City": "Los Angeles", "State": "CA", "Beds": 886}, | |
{"Hospital": "Jackson Memorial Hospital", "City": "Miami", "State": "FL", "Beds": 1618}, | |
{"Hospital": "New York-Presbyterian Hospital", "City": "New York", "State": "NY", "Beds": 2528}, | |
{"Hospital": "Barnes-Jewish Hospital", "City": "St. Louis", "State": "MO", "Beds": 1252}, | |
] | |
# Create a Pandas DataFrame from the data | |
df = pd.DataFrame(data) | |
# Define the generative AI function | |
def generate_data(df, num_rows=1): | |
# Calculate the mean and standard deviation of the Beds column | |
bed_mean = df["Beds"].mean() | |
bed_std = df["Beds"].std() | |
# Generate new data using a normal distribution | |
new_data = { | |
"Hospital": [f"Generated Hospital {i}" for i in range(num_rows)], | |
"City": np.random.choice(df["City"], num_rows), | |
"State": np.random.choice(df["State"], num_rows), | |
"Beds": np.random.normal(bed_mean, bed_std, num_rows).astype(int) | |
} | |
# Create a new DataFrame from the generated data and return it | |
return pd.DataFrame(new_data) | |
# Define the Streamlit app | |
def app(): | |
st.title("Generative AI Demo") | |
# Display the original data | |
st.subheader("Original Data") | |
st.write(df) | |
# Generate new data and display it | |
st.subheader("Generated Data") | |
num_rows = st.slider("Number of rows to generate", min_value=1, max_value=100, value=1) | |
new_data = generate_data(df, num_rows=num_rows) | |
st.write(new_data) | |
# Run the Streamlit app | |
if __name__ == "__main__": | |
app() | |