awacke1 commited on
Commit
be736db
1 Parent(s): ba4f514

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -0
app.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+
5
+ # Load the largest hospitals data
6
+ data = [
7
+ {"Hospital": "Texas Health Presbyterian Hospital Dallas", "City": "Dallas", "State": "TX", "Beds": 898},
8
+ {"Hospital": "Cedars-Sinai Medical Center", "City": "Los Angeles", "State": "CA", "Beds": 886},
9
+ {"Hospital": "Jackson Memorial Hospital", "City": "Miami", "State": "FL", "Beds": 1618},
10
+ {"Hospital": "New York-Presbyterian Hospital", "City": "New York", "State": "NY", "Beds": 2528},
11
+ {"Hospital": "Barnes-Jewish Hospital", "City": "St. Louis", "State": "MO", "Beds": 1252},
12
+ ]
13
+
14
+ # Create a Pandas DataFrame from the data
15
+ df = pd.DataFrame(data)
16
+
17
+ # Define the generative AI function
18
+ def generate_data(df, num_rows=1):
19
+ # Calculate the mean and standard deviation of the Beds column
20
+ bed_mean = df["Beds"].mean()
21
+ bed_std = df["Beds"].std()
22
+
23
+ # Generate new data using a normal distribution
24
+ new_data = {
25
+ "Hospital": [f"Generated Hospital {i}" for i in range(num_rows)],
26
+ "City": np.random.choice(df["City"], num_rows),
27
+ "State": np.random.choice(df["State"], num_rows),
28
+ "Beds": np.random.normal(bed_mean, bed_std, num_rows).astype(int)
29
+ }
30
+
31
+ # Create a new DataFrame from the generated data and return it
32
+ return pd.DataFrame(new_data)
33
+
34
+ # Define the Streamlit app
35
+ def app():
36
+ st.title("Generative AI Demo")
37
+
38
+ # Display the original data
39
+ st.subheader("Original Data")
40
+ st.write(df)
41
+
42
+ # Generate new data and display it
43
+ st.subheader("Generated Data")
44
+ num_rows = st.slider("Number of rows to generate", min_value=1, max_value=100, value=1)
45
+ new_data = generate_data(df, num_rows=num_rows)
46
+ st.write(new_data)
47
+
48
+ # Run the Streamlit app
49
+ if __name__ == "__main__":
50
+ app()