Update app.py
Browse files
app.py
CHANGED
@@ -53,6 +53,24 @@ st.set_page_config(
|
|
53 |
}
|
54 |
)
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
client = OpenAI(api_key= os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
|
57 |
MODEL = "gpt-4o-2024-05-13"
|
58 |
if "openai_model" not in st.session_state:
|
@@ -94,6 +112,269 @@ def SpeechSynthesis(result):
|
|
94 |
|
95 |
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
# 🔍Search Glossary
|
98 |
# @st.cache_resource
|
99 |
def search_glossary(query):
|
@@ -628,7 +909,9 @@ def FileSidebar():
|
|
628 |
if next_action=='search':
|
629 |
filesearch = PromptPrefix + file_contents
|
630 |
st.markdown(filesearch)
|
631 |
-
search_glossary(filesearch)
|
|
|
|
|
632 |
|
633 |
if next_action=='md':
|
634 |
st.markdown(file_contents)
|
@@ -869,32 +1152,16 @@ def display_buttons_with_scores(num_columns_text):
|
|
869 |
key = f"{category}_{game}_{term}".replace(' ', '_').lower()
|
870 |
score = load_score(key)
|
871 |
if st.button(f"{game_emoji} {category} {game} {term} {score}", key=key):
|
872 |
-
newscore = update_score(key.replace('?',''))
|
873 |
-
query_prefix = f"{category_emoji} {game_emoji} ** {category} - {game} - {term} - **"
|
874 |
-
st.markdown("Scored " + query_prefix + ' with score ' + str(newscore) + '.')
|
875 |
-
|
876 |
-
|
877 |
-
def get_all_query_params(key):
|
878 |
-
return st.query_params().get(key, [])
|
879 |
-
|
880 |
-
def clear_query_params():
|
881 |
-
st.query_params()
|
882 |
-
|
883 |
-
# My Inference API Copy
|
884 |
-
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama
|
885 |
-
# Meta's Original - Chat HF Free Version:
|
886 |
-
#API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
|
887 |
-
API_KEY = os.getenv('API_KEY')
|
888 |
-
MODEL1="meta-llama/Llama-2-7b-chat-hf"
|
889 |
-
MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
|
890 |
-
HF_KEY = os.getenv('HF_KEY')
|
891 |
-
headers = {
|
892 |
-
"Authorization": f"Bearer {HF_KEY}",
|
893 |
-
"Content-Type": "application/json"
|
894 |
-
}
|
895 |
-
key = os.getenv('OPENAI_API_KEY')
|
896 |
-
prompt = "...."
|
897 |
-
should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")
|
898 |
|
899 |
|
900 |
|
@@ -951,15 +1218,6 @@ def query(payload):
|
|
951 |
def get_output(prompt):
|
952 |
return query({"inputs": prompt})
|
953 |
|
954 |
-
# 5. Auto name generated output files from time and content
|
955 |
-
def generate_filename(prompt, file_type):
|
956 |
-
central = pytz.timezone('US/Central')
|
957 |
-
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
958 |
-
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
|
959 |
-
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:255] # 255 is linux max, 260 is windows max
|
960 |
-
#safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45]
|
961 |
-
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
962 |
-
|
963 |
# 6. Speech transcription via OpenAI service
|
964 |
def transcribe_audio(openai_key, file_path, model):
|
965 |
openai.api_key = openai_key
|
@@ -1444,244 +1702,6 @@ if AddAFileForContext:
|
|
1444 |
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
1445 |
|
1446 |
|
1447 |
-
# GPT4o documentation
|
1448 |
-
# 1. Cookbook: https://cookbook.openai.com/examples/gpt4o/introduction_to_gpt4o
|
1449 |
-
# 2. Configure your Project and Orgs to limit/allow Models: https://platform.openai.com/settings/organization/general
|
1450 |
-
# 3. Watch your Billing! https://platform.openai.com/settings/organization/billing/overview
|
1451 |
-
|
1452 |
-
|
1453 |
-
# Set API key and organization ID from environment variables
|
1454 |
-
|
1455 |
-
openai.api_key = os.getenv('OPENAI_API_KEY')
|
1456 |
-
openai.organization = os.getenv('OPENAI_ORG_ID')
|
1457 |
-
client = OpenAI(api_key= os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
|
1458 |
-
|
1459 |
-
# Define the model to be used
|
1460 |
-
#MODEL = "gpt-4o"
|
1461 |
-
MODEL = "gpt-4o-2024-05-13"
|
1462 |
-
|
1463 |
-
def process_text(text_input):
|
1464 |
-
if text_input:
|
1465 |
-
|
1466 |
-
st.session_state.messages.append({"role": "user", "content": text_input})
|
1467 |
-
|
1468 |
-
with st.chat_message("user"):
|
1469 |
-
st.markdown(text_input)
|
1470 |
-
|
1471 |
-
with st.chat_message("assistant"):
|
1472 |
-
completion = client.chat.completions.create(
|
1473 |
-
model=MODEL,
|
1474 |
-
messages=[
|
1475 |
-
{"role": m["role"], "content": m["content"]}
|
1476 |
-
for m in st.session_state.messages
|
1477 |
-
],
|
1478 |
-
stream=False
|
1479 |
-
)
|
1480 |
-
return_text = completion.choices[0].message.content
|
1481 |
-
st.write("Assistant: " + return_text)
|
1482 |
-
filename = generate_filename(text_input, "md")
|
1483 |
-
create_file(filename, text_input, return_text, should_save)
|
1484 |
-
st.session_state.messages.append({"role": "assistant", "content": return_text})
|
1485 |
-
|
1486 |
-
#st.write("Assistant: " + completion.choices[0].message.content)
|
1487 |
-
|
1488 |
-
def create_file(filename, prompt, response, is_image=False):
|
1489 |
-
with open(filename, "w", encoding="utf-8") as f:
|
1490 |
-
f.write(prompt + "\n\n" + response)
|
1491 |
-
|
1492 |
-
def save_image_old2(image, filename):
|
1493 |
-
with open(filename, "wb") as f:
|
1494 |
-
f.write(image.getbuffer())
|
1495 |
-
|
1496 |
-
# Now filename length protected for linux and windows filename lengths
|
1497 |
-
def save_image(image, filename):
|
1498 |
-
max_filename_length = 250
|
1499 |
-
filename_stem, extension = os.path.splitext(filename)
|
1500 |
-
truncated_stem = filename_stem[:max_filename_length - len(extension)] if len(filename) > max_filename_length else filename_stem
|
1501 |
-
filename = f"{truncated_stem}{extension}"
|
1502 |
-
with open(filename, "wb") as f:
|
1503 |
-
f.write(image.getbuffer())
|
1504 |
-
return filename
|
1505 |
-
|
1506 |
-
def extract_boldface_terms(text):
|
1507 |
-
return re.findall(r'\*\*(.*?)\*\*', text)
|
1508 |
-
|
1509 |
-
def extract_title(text):
|
1510 |
-
boldface_terms = re.findall(r'\*\*(.*?)\*\*', text)
|
1511 |
-
if boldface_terms:
|
1512 |
-
title = ' '.join(boldface_terms)
|
1513 |
-
else:
|
1514 |
-
title = re.sub(r'[^a-zA-Z0-9_\-]', ' ', text[-200:])
|
1515 |
-
return title[-200:]
|
1516 |
-
|
1517 |
-
def process_image(image_input, user_prompt):
|
1518 |
-
if image_input:
|
1519 |
-
st.markdown('Processing image: ' + image_input.name )
|
1520 |
-
if image_input:
|
1521 |
-
base64_image = base64.b64encode(image_input.read()).decode("utf-8")
|
1522 |
-
response = client.chat.completions.create(
|
1523 |
-
model=MODEL,
|
1524 |
-
messages=[
|
1525 |
-
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
|
1526 |
-
{"role": "user", "content": [
|
1527 |
-
{"type": "text", "text": user_prompt},
|
1528 |
-
{"type": "image_url", "image_url": {
|
1529 |
-
"url": f"data:image/png;base64,{base64_image}"}
|
1530 |
-
}
|
1531 |
-
]}
|
1532 |
-
],
|
1533 |
-
temperature=0.0,
|
1534 |
-
)
|
1535 |
-
image_response = response.choices[0].message.content
|
1536 |
-
st.markdown(image_response)
|
1537 |
-
|
1538 |
-
# Save markdown on image AI output from gpt4o
|
1539 |
-
filename_md = generate_filename(image_input.name + '- ' + image_response, "md")
|
1540 |
-
# Save markdown on image AI output from gpt4o
|
1541 |
-
filename_png = filename_md.replace('.md', '.' + image_input.name.split('.')[-1])
|
1542 |
-
|
1543 |
-
create_file(filename_md, image_response, '', True) #create_file() # create_file() 3 required positional arguments: 'filename', 'prompt', and 'response'
|
1544 |
-
|
1545 |
-
with open(filename_md, "w", encoding="utf-8") as f:
|
1546 |
-
f.write(image_response)
|
1547 |
-
|
1548 |
-
# Extract boldface terms from image_response then autoname save file
|
1549 |
-
#boldface_terms = extract_boldface_terms(image_response)
|
1550 |
-
boldface_terms = extract_title(image_response).replace(':','')
|
1551 |
-
filename_stem, extension = os.path.splitext(image_input.name)
|
1552 |
-
filename_img = f"{filename_stem} {''.join(boldface_terms)}{extension}"
|
1553 |
-
newfilename = save_image(image_input, filename_img)
|
1554 |
-
filename_md = newfilename.replace('.png', '.md')
|
1555 |
-
create_file(filename_md, '', image_response, True)
|
1556 |
-
|
1557 |
-
return image_response
|
1558 |
-
|
1559 |
-
def create_audio_file(filename, audio_data, should_save):
|
1560 |
-
if should_save:
|
1561 |
-
with open(filename, "wb") as file:
|
1562 |
-
file.write(audio_data.getvalue())
|
1563 |
-
st.success(f"Audio file saved as {filename}")
|
1564 |
-
else:
|
1565 |
-
st.warning("Audio file not saved.")
|
1566 |
-
|
1567 |
-
def process_audio(audio_input, text_input):
|
1568 |
-
if audio_input:
|
1569 |
-
transcription = client.audio.transcriptions.create(
|
1570 |
-
model="whisper-1",
|
1571 |
-
file=audio_input,
|
1572 |
-
)
|
1573 |
-
st.session_state.messages.append({"role": "user", "content": transcription.text})
|
1574 |
-
with st.chat_message("assistant"):
|
1575 |
-
st.markdown(transcription.text)
|
1576 |
-
|
1577 |
-
SpeechSynthesis(transcription.text)
|
1578 |
-
filename = generate_filename(transcription.text, "wav")
|
1579 |
-
|
1580 |
-
create_audio_file(filename, audio_input, should_save)
|
1581 |
-
|
1582 |
-
#SpeechSynthesis(transcription.text)
|
1583 |
-
|
1584 |
-
filename = generate_filename(transcription.text, "md")
|
1585 |
-
create_file(filename, transcription.text, transcription.text, should_save)
|
1586 |
-
#st.markdown(response.choices[0].message.content)
|
1587 |
-
|
1588 |
-
def process_audio_for_video(video_input):
|
1589 |
-
if video_input:
|
1590 |
-
try:
|
1591 |
-
transcription = client.audio.transcriptions.create(
|
1592 |
-
model="whisper-1",
|
1593 |
-
file=video_input,
|
1594 |
-
)
|
1595 |
-
response = client.chat.completions.create(
|
1596 |
-
model=MODEL,
|
1597 |
-
messages=[
|
1598 |
-
{"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""},
|
1599 |
-
{"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription}"}],}
|
1600 |
-
],
|
1601 |
-
temperature=0,
|
1602 |
-
)
|
1603 |
-
st.markdown(response.choices[0].message.content)
|
1604 |
-
return response.choices[0].message.content
|
1605 |
-
except:
|
1606 |
-
st.write('No transcript')
|
1607 |
-
|
1608 |
-
def save_video(video_file):
|
1609 |
-
# Save the uploaded video file
|
1610 |
-
with open(video_file.name, "wb") as f:
|
1611 |
-
f.write(video_file.getbuffer())
|
1612 |
-
return video_file.name
|
1613 |
-
|
1614 |
-
def process_video(video_path, seconds_per_frame=2):
|
1615 |
-
base64Frames = []
|
1616 |
-
base_video_path, _ = os.path.splitext(video_path)
|
1617 |
-
video = cv2.VideoCapture(video_path)
|
1618 |
-
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
1619 |
-
fps = video.get(cv2.CAP_PROP_FPS)
|
1620 |
-
frames_to_skip = int(fps * seconds_per_frame)
|
1621 |
-
curr_frame = 0
|
1622 |
-
|
1623 |
-
# Loop through the video and extract frames at specified sampling rate
|
1624 |
-
while curr_frame < total_frames - 1:
|
1625 |
-
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
|
1626 |
-
success, frame = video.read()
|
1627 |
-
if not success:
|
1628 |
-
break
|
1629 |
-
_, buffer = cv2.imencode(".jpg", frame)
|
1630 |
-
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
|
1631 |
-
curr_frame += frames_to_skip
|
1632 |
-
|
1633 |
-
video.release()
|
1634 |
-
|
1635 |
-
# Extract audio from video
|
1636 |
-
audio_path = f"{base_video_path}.mp3"
|
1637 |
-
try:
|
1638 |
-
clip = VideoFileClip(video_path)
|
1639 |
-
|
1640 |
-
clip.audio.write_audiofile(audio_path, bitrate="32k")
|
1641 |
-
clip.audio.close()
|
1642 |
-
|
1643 |
-
clip.close()
|
1644 |
-
except:
|
1645 |
-
st.write('No audio track found, moving on..')
|
1646 |
-
|
1647 |
-
|
1648 |
-
print(f"Extracted {len(base64Frames)} frames")
|
1649 |
-
print(f"Extracted audio to {audio_path}")
|
1650 |
-
|
1651 |
-
return base64Frames, audio_path
|
1652 |
-
|
1653 |
-
def process_audio_and_video(video_input):
|
1654 |
-
if video_input is not None:
|
1655 |
-
# Save the uploaded video file
|
1656 |
-
video_path = save_video(video_input )
|
1657 |
-
|
1658 |
-
# Process the saved video
|
1659 |
-
base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
|
1660 |
-
|
1661 |
-
# Get the transcript for the video model call
|
1662 |
-
transcript = process_audio_for_video(video_input)
|
1663 |
-
|
1664 |
-
# Generate a summary with visual and audio
|
1665 |
-
response = client.chat.completions.create(
|
1666 |
-
model=MODEL,
|
1667 |
-
messages=[
|
1668 |
-
{"role": "system", "content": """You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"""},
|
1669 |
-
{"role": "user", "content": [
|
1670 |
-
"These are the frames from the video.",
|
1671 |
-
*map(lambda x: {"type": "image_url",
|
1672 |
-
"image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
|
1673 |
-
{"type": "text", "text": f"The audio transcription is: {transcript}"}
|
1674 |
-
]},
|
1675 |
-
],
|
1676 |
-
temperature=0,
|
1677 |
-
)
|
1678 |
-
results = response.choices[0].message.content
|
1679 |
-
st.markdown(results)
|
1680 |
-
|
1681 |
-
if transcript:
|
1682 |
-
filename = generate_filename(transcript, "md")
|
1683 |
-
create_file(filename, transcript, results, should_save)
|
1684 |
-
|
1685 |
|
1686 |
|
1687 |
def main():
|
|
|
53 |
}
|
54 |
)
|
55 |
|
56 |
+
# My Inference API Copy
|
57 |
+
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama
|
58 |
+
# Meta's Original - Chat HF Free Version:
|
59 |
+
#API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
|
60 |
+
API_KEY = os.getenv('API_KEY')
|
61 |
+
MODEL1="meta-llama/Llama-2-7b-chat-hf"
|
62 |
+
MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
|
63 |
+
HF_KEY = os.getenv('HF_KEY')
|
64 |
+
headers = {
|
65 |
+
"Authorization": f"Bearer {HF_KEY}",
|
66 |
+
"Content-Type": "application/json"
|
67 |
+
}
|
68 |
+
key = os.getenv('OPENAI_API_KEY')
|
69 |
+
prompt = "...."
|
70 |
+
should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
client = OpenAI(api_key= os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
|
75 |
MODEL = "gpt-4o-2024-05-13"
|
76 |
if "openai_model" not in st.session_state:
|
|
|
112 |
|
113 |
|
114 |
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
# GPT4o documentation
|
120 |
+
# 1. Cookbook: https://cookbook.openai.com/examples/gpt4o/introduction_to_gpt4o
|
121 |
+
# 2. Configure your Project and Orgs to limit/allow Models: https://platform.openai.com/settings/organization/general
|
122 |
+
# 3. Watch your Billing! https://platform.openai.com/settings/organization/billing/overview
|
123 |
+
|
124 |
+
|
125 |
+
# Set API key and organization ID from environment variables
|
126 |
+
|
127 |
+
openai.api_key = os.getenv('OPENAI_API_KEY')
|
128 |
+
openai.organization = os.getenv('OPENAI_ORG_ID')
|
129 |
+
client = OpenAI(api_key= os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
|
130 |
+
|
131 |
+
# Define the model to be used
|
132 |
+
#MODEL = "gpt-4o"
|
133 |
+
MODEL = "gpt-4o-2024-05-13"
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
# 5. Auto name generated output files from time and content
|
140 |
+
def generate_filename(prompt, file_type):
|
141 |
+
central = pytz.timezone('US/Central')
|
142 |
+
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
143 |
+
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
|
144 |
+
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:240] # 255 is linux max, 260 is windows max
|
145 |
+
#safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45]
|
146 |
+
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
def process_text(text_input):
|
151 |
+
if text_input:
|
152 |
+
|
153 |
+
st.session_state.messages.append({"role": "user", "content": text_input})
|
154 |
+
|
155 |
+
with st.chat_message("user"):
|
156 |
+
st.markdown(text_input)
|
157 |
+
|
158 |
+
with st.chat_message("assistant"):
|
159 |
+
completion = client.chat.completions.create(
|
160 |
+
model=MODEL,
|
161 |
+
messages=[
|
162 |
+
{"role": m["role"], "content": m["content"]}
|
163 |
+
for m in st.session_state.messages
|
164 |
+
],
|
165 |
+
stream=False
|
166 |
+
)
|
167 |
+
return_text = completion.choices[0].message.content
|
168 |
+
st.write("Assistant: " + return_text)
|
169 |
+
filename = generate_filename(text_input, "md")
|
170 |
+
create_file(filename, text_input, return_text, should_save)
|
171 |
+
st.session_state.messages.append({"role": "assistant", "content": return_text})
|
172 |
+
|
173 |
+
#st.write("Assistant: " + completion.choices[0].message.content)
|
174 |
+
|
175 |
+
def create_file(filename, prompt, response, is_image=False):
|
176 |
+
with open(filename, "w", encoding="utf-8") as f:
|
177 |
+
f.write(prompt + "\n\n" + response)
|
178 |
+
|
179 |
+
def save_image_old2(image, filename):
|
180 |
+
with open(filename, "wb") as f:
|
181 |
+
f.write(image.getbuffer())
|
182 |
+
|
183 |
+
# Now filename length protected for linux and windows filename lengths
|
184 |
+
def save_image(image, filename):
|
185 |
+
max_filename_length = 250
|
186 |
+
filename_stem, extension = os.path.splitext(filename)
|
187 |
+
truncated_stem = filename_stem[:max_filename_length - len(extension)] if len(filename) > max_filename_length else filename_stem
|
188 |
+
filename = f"{truncated_stem}{extension}"
|
189 |
+
with open(filename, "wb") as f:
|
190 |
+
f.write(image.getbuffer())
|
191 |
+
return filename
|
192 |
+
|
193 |
+
def extract_boldface_terms(text):
|
194 |
+
return re.findall(r'\*\*(.*?)\*\*', text)
|
195 |
+
|
196 |
+
def extract_title(text):
|
197 |
+
boldface_terms = re.findall(r'\*\*(.*?)\*\*', text)
|
198 |
+
if boldface_terms:
|
199 |
+
title = ' '.join(boldface_terms)
|
200 |
+
else:
|
201 |
+
title = re.sub(r'[^a-zA-Z0-9_\-]', ' ', text[-200:])
|
202 |
+
return title[-200:]
|
203 |
+
|
204 |
+
def process_image(image_input, user_prompt):
|
205 |
+
if image_input:
|
206 |
+
st.markdown('Processing image: ' + image_input.name )
|
207 |
+
if image_input:
|
208 |
+
base64_image = base64.b64encode(image_input.read()).decode("utf-8")
|
209 |
+
response = client.chat.completions.create(
|
210 |
+
model=MODEL,
|
211 |
+
messages=[
|
212 |
+
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
|
213 |
+
{"role": "user", "content": [
|
214 |
+
{"type": "text", "text": user_prompt},
|
215 |
+
{"type": "image_url", "image_url": {
|
216 |
+
"url": f"data:image/png;base64,{base64_image}"}
|
217 |
+
}
|
218 |
+
]}
|
219 |
+
],
|
220 |
+
temperature=0.0,
|
221 |
+
)
|
222 |
+
image_response = response.choices[0].message.content
|
223 |
+
st.markdown(image_response)
|
224 |
+
|
225 |
+
# Save markdown on image AI output from gpt4o
|
226 |
+
filename_md = generate_filename(image_input.name + '- ' + image_response, "md")
|
227 |
+
# Save markdown on image AI output from gpt4o
|
228 |
+
filename_png = filename_md.replace('.md', '.' + image_input.name.split('.')[-1])
|
229 |
+
|
230 |
+
create_file(filename_md, image_response, '', True) #create_file() # create_file() 3 required positional arguments: 'filename', 'prompt', and 'response'
|
231 |
+
|
232 |
+
with open(filename_md, "w", encoding="utf-8") as f:
|
233 |
+
f.write(image_response)
|
234 |
+
|
235 |
+
# Extract boldface terms from image_response then autoname save file
|
236 |
+
#boldface_terms = extract_boldface_terms(image_response)
|
237 |
+
boldface_terms = extract_title(image_response).replace(':','')
|
238 |
+
filename_stem, extension = os.path.splitext(image_input.name)
|
239 |
+
filename_img = f"{filename_stem} {''.join(boldface_terms)}{extension}"
|
240 |
+
newfilename = save_image(image_input, filename_img)
|
241 |
+
filename_md = newfilename.replace('.png', '.md')
|
242 |
+
create_file(filename_md, '', image_response, True)
|
243 |
+
|
244 |
+
return image_response
|
245 |
+
|
246 |
+
def create_audio_file(filename, audio_data, should_save):
|
247 |
+
if should_save:
|
248 |
+
with open(filename, "wb") as file:
|
249 |
+
file.write(audio_data.getvalue())
|
250 |
+
st.success(f"Audio file saved as {filename}")
|
251 |
+
else:
|
252 |
+
st.warning("Audio file not saved.")
|
253 |
+
|
254 |
+
def process_audio(audio_input, text_input):
|
255 |
+
if audio_input:
|
256 |
+
transcription = client.audio.transcriptions.create(
|
257 |
+
model="whisper-1",
|
258 |
+
file=audio_input,
|
259 |
+
)
|
260 |
+
st.session_state.messages.append({"role": "user", "content": transcription.text})
|
261 |
+
with st.chat_message("assistant"):
|
262 |
+
st.markdown(transcription.text)
|
263 |
+
|
264 |
+
SpeechSynthesis(transcription.text)
|
265 |
+
filename = generate_filename(transcription.text, "wav")
|
266 |
+
|
267 |
+
create_audio_file(filename, audio_input, should_save)
|
268 |
+
|
269 |
+
#SpeechSynthesis(transcription.text)
|
270 |
+
|
271 |
+
filename = generate_filename(transcription.text, "md")
|
272 |
+
create_file(filename, transcription.text, transcription.text, should_save)
|
273 |
+
#st.markdown(response.choices[0].message.content)
|
274 |
+
|
275 |
+
def process_audio_for_video(video_input):
|
276 |
+
if video_input:
|
277 |
+
try:
|
278 |
+
transcription = client.audio.transcriptions.create(
|
279 |
+
model="whisper-1",
|
280 |
+
file=video_input,
|
281 |
+
)
|
282 |
+
response = client.chat.completions.create(
|
283 |
+
model=MODEL,
|
284 |
+
messages=[
|
285 |
+
{"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""},
|
286 |
+
{"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription}"}],}
|
287 |
+
],
|
288 |
+
temperature=0,
|
289 |
+
)
|
290 |
+
st.markdown(response.choices[0].message.content)
|
291 |
+
return response.choices[0].message.content
|
292 |
+
except:
|
293 |
+
st.write('No transcript')
|
294 |
+
|
295 |
+
def save_video(video_file):
|
296 |
+
# Save the uploaded video file
|
297 |
+
with open(video_file.name, "wb") as f:
|
298 |
+
f.write(video_file.getbuffer())
|
299 |
+
return video_file.name
|
300 |
+
|
301 |
+
def process_video(video_path, seconds_per_frame=2):
|
302 |
+
base64Frames = []
|
303 |
+
base_video_path, _ = os.path.splitext(video_path)
|
304 |
+
video = cv2.VideoCapture(video_path)
|
305 |
+
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
306 |
+
fps = video.get(cv2.CAP_PROP_FPS)
|
307 |
+
frames_to_skip = int(fps * seconds_per_frame)
|
308 |
+
curr_frame = 0
|
309 |
+
|
310 |
+
# Loop through the video and extract frames at specified sampling rate
|
311 |
+
while curr_frame < total_frames - 1:
|
312 |
+
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
|
313 |
+
success, frame = video.read()
|
314 |
+
if not success:
|
315 |
+
break
|
316 |
+
_, buffer = cv2.imencode(".jpg", frame)
|
317 |
+
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
|
318 |
+
curr_frame += frames_to_skip
|
319 |
+
|
320 |
+
video.release()
|
321 |
+
|
322 |
+
# Extract audio from video
|
323 |
+
audio_path = f"{base_video_path}.mp3"
|
324 |
+
try:
|
325 |
+
clip = VideoFileClip(video_path)
|
326 |
+
|
327 |
+
clip.audio.write_audiofile(audio_path, bitrate="32k")
|
328 |
+
clip.audio.close()
|
329 |
+
|
330 |
+
clip.close()
|
331 |
+
except:
|
332 |
+
st.write('No audio track found, moving on..')
|
333 |
+
|
334 |
+
|
335 |
+
print(f"Extracted {len(base64Frames)} frames")
|
336 |
+
print(f"Extracted audio to {audio_path}")
|
337 |
+
|
338 |
+
return base64Frames, audio_path
|
339 |
+
|
340 |
+
def process_audio_and_video(video_input):
|
341 |
+
if video_input is not None:
|
342 |
+
# Save the uploaded video file
|
343 |
+
video_path = save_video(video_input )
|
344 |
+
|
345 |
+
# Process the saved video
|
346 |
+
base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
|
347 |
+
|
348 |
+
# Get the transcript for the video model call
|
349 |
+
transcript = process_audio_for_video(video_input)
|
350 |
+
|
351 |
+
# Generate a summary with visual and audio
|
352 |
+
response = client.chat.completions.create(
|
353 |
+
model=MODEL,
|
354 |
+
messages=[
|
355 |
+
{"role": "system", "content": """You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"""},
|
356 |
+
{"role": "user", "content": [
|
357 |
+
"These are the frames from the video.",
|
358 |
+
*map(lambda x: {"type": "image_url",
|
359 |
+
"image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
|
360 |
+
{"type": "text", "text": f"The audio transcription is: {transcript}"}
|
361 |
+
]},
|
362 |
+
],
|
363 |
+
temperature=0,
|
364 |
+
)
|
365 |
+
results = response.choices[0].message.content
|
366 |
+
st.markdown(results)
|
367 |
+
|
368 |
+
if transcript:
|
369 |
+
filename = generate_filename(transcript, "md")
|
370 |
+
create_file(filename, transcript, results, should_save)
|
371 |
+
|
372 |
+
|
373 |
+
|
374 |
+
|
375 |
+
|
376 |
+
|
377 |
+
|
378 |
# 🔍Search Glossary
|
379 |
# @st.cache_resource
|
380 |
def search_glossary(query):
|
|
|
909 |
if next_action=='search':
|
910 |
filesearch = PromptPrefix + file_contents
|
911 |
st.markdown(filesearch)
|
912 |
+
#search_glossary(filesearch)
|
913 |
+
|
914 |
+
process_text(filesearch)
|
915 |
|
916 |
if next_action=='md':
|
917 |
st.markdown(file_contents)
|
|
|
1152 |
key = f"{category}_{game}_{term}".replace(' ', '_').lower()
|
1153 |
score = load_score(key)
|
1154 |
if st.button(f"{game_emoji} {category} {game} {term} {score}", key=key):
|
1155 |
+
newscore = update_score(key.replace('?',''))
|
1156 |
+
query_prefix = f"{category_emoji} {game_emoji} ** {category} - {game} - {term} - **"
|
1157 |
+
st.markdown("Scored " + query_prefix + ' with score ' + str(newscore) + '.')
|
1158 |
+
|
1159 |
+
|
1160 |
+
def get_all_query_params(key):
|
1161 |
+
return st.query_params().get(key, [])
|
1162 |
+
|
1163 |
+
def clear_query_params():
|
1164 |
+
st.query_params()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1165 |
|
1166 |
|
1167 |
|
|
|
1218 |
def get_output(prompt):
|
1219 |
return query({"inputs": prompt})
|
1220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1221 |
# 6. Speech transcription via OpenAI service
|
1222 |
def transcribe_audio(openai_key, file_path, model):
|
1223 |
openai.api_key = openai_key
|
|
|
1702 |
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
1703 |
|
1704 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1705 |
|
1706 |
|
1707 |
def main():
|