awacke1 commited on
Commit
8039f47
·
verified ·
1 Parent(s): b642de5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +294 -274
app.py CHANGED
@@ -53,6 +53,24 @@ st.set_page_config(
53
  }
54
  )
55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  client = OpenAI(api_key= os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
57
  MODEL = "gpt-4o-2024-05-13"
58
  if "openai_model" not in st.session_state:
@@ -94,6 +112,269 @@ def SpeechSynthesis(result):
94
 
95
 
96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  # 🔍Search Glossary
98
  # @st.cache_resource
99
  def search_glossary(query):
@@ -628,7 +909,9 @@ def FileSidebar():
628
  if next_action=='search':
629
  filesearch = PromptPrefix + file_contents
630
  st.markdown(filesearch)
631
- search_glossary(filesearch)
 
 
632
 
633
  if next_action=='md':
634
  st.markdown(file_contents)
@@ -869,32 +1152,16 @@ def display_buttons_with_scores(num_columns_text):
869
  key = f"{category}_{game}_{term}".replace(' ', '_').lower()
870
  score = load_score(key)
871
  if st.button(f"{game_emoji} {category} {game} {term} {score}", key=key):
872
- newscore = update_score(key.replace('?',''))
873
- query_prefix = f"{category_emoji} {game_emoji} ** {category} - {game} - {term} - **"
874
- st.markdown("Scored " + query_prefix + ' with score ' + str(newscore) + '.')
875
-
876
-
877
- def get_all_query_params(key):
878
- return st.query_params().get(key, [])
879
-
880
- def clear_query_params():
881
- st.query_params()
882
-
883
- # My Inference API Copy
884
- API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama
885
- # Meta's Original - Chat HF Free Version:
886
- #API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
887
- API_KEY = os.getenv('API_KEY')
888
- MODEL1="meta-llama/Llama-2-7b-chat-hf"
889
- MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
890
- HF_KEY = os.getenv('HF_KEY')
891
- headers = {
892
- "Authorization": f"Bearer {HF_KEY}",
893
- "Content-Type": "application/json"
894
- }
895
- key = os.getenv('OPENAI_API_KEY')
896
- prompt = "...."
897
- should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")
898
 
899
 
900
 
@@ -951,15 +1218,6 @@ def query(payload):
951
  def get_output(prompt):
952
  return query({"inputs": prompt})
953
 
954
- # 5. Auto name generated output files from time and content
955
- def generate_filename(prompt, file_type):
956
- central = pytz.timezone('US/Central')
957
- safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
958
- replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
959
- safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:255] # 255 is linux max, 260 is windows max
960
- #safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45]
961
- return f"{safe_date_time}_{safe_prompt}.{file_type}"
962
-
963
  # 6. Speech transcription via OpenAI service
964
  def transcribe_audio(openai_key, file_path, model):
965
  openai.api_key = openai_key
@@ -1444,244 +1702,6 @@ if AddAFileForContext:
1444
  st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
1445
 
1446
 
1447
- # GPT4o documentation
1448
- # 1. Cookbook: https://cookbook.openai.com/examples/gpt4o/introduction_to_gpt4o
1449
- # 2. Configure your Project and Orgs to limit/allow Models: https://platform.openai.com/settings/organization/general
1450
- # 3. Watch your Billing! https://platform.openai.com/settings/organization/billing/overview
1451
-
1452
-
1453
- # Set API key and organization ID from environment variables
1454
-
1455
- openai.api_key = os.getenv('OPENAI_API_KEY')
1456
- openai.organization = os.getenv('OPENAI_ORG_ID')
1457
- client = OpenAI(api_key= os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
1458
-
1459
- # Define the model to be used
1460
- #MODEL = "gpt-4o"
1461
- MODEL = "gpt-4o-2024-05-13"
1462
-
1463
- def process_text(text_input):
1464
- if text_input:
1465
-
1466
- st.session_state.messages.append({"role": "user", "content": text_input})
1467
-
1468
- with st.chat_message("user"):
1469
- st.markdown(text_input)
1470
-
1471
- with st.chat_message("assistant"):
1472
- completion = client.chat.completions.create(
1473
- model=MODEL,
1474
- messages=[
1475
- {"role": m["role"], "content": m["content"]}
1476
- for m in st.session_state.messages
1477
- ],
1478
- stream=False
1479
- )
1480
- return_text = completion.choices[0].message.content
1481
- st.write("Assistant: " + return_text)
1482
- filename = generate_filename(text_input, "md")
1483
- create_file(filename, text_input, return_text, should_save)
1484
- st.session_state.messages.append({"role": "assistant", "content": return_text})
1485
-
1486
- #st.write("Assistant: " + completion.choices[0].message.content)
1487
-
1488
- def create_file(filename, prompt, response, is_image=False):
1489
- with open(filename, "w", encoding="utf-8") as f:
1490
- f.write(prompt + "\n\n" + response)
1491
-
1492
- def save_image_old2(image, filename):
1493
- with open(filename, "wb") as f:
1494
- f.write(image.getbuffer())
1495
-
1496
- # Now filename length protected for linux and windows filename lengths
1497
- def save_image(image, filename):
1498
- max_filename_length = 250
1499
- filename_stem, extension = os.path.splitext(filename)
1500
- truncated_stem = filename_stem[:max_filename_length - len(extension)] if len(filename) > max_filename_length else filename_stem
1501
- filename = f"{truncated_stem}{extension}"
1502
- with open(filename, "wb") as f:
1503
- f.write(image.getbuffer())
1504
- return filename
1505
-
1506
- def extract_boldface_terms(text):
1507
- return re.findall(r'\*\*(.*?)\*\*', text)
1508
-
1509
- def extract_title(text):
1510
- boldface_terms = re.findall(r'\*\*(.*?)\*\*', text)
1511
- if boldface_terms:
1512
- title = ' '.join(boldface_terms)
1513
- else:
1514
- title = re.sub(r'[^a-zA-Z0-9_\-]', ' ', text[-200:])
1515
- return title[-200:]
1516
-
1517
- def process_image(image_input, user_prompt):
1518
- if image_input:
1519
- st.markdown('Processing image: ' + image_input.name )
1520
- if image_input:
1521
- base64_image = base64.b64encode(image_input.read()).decode("utf-8")
1522
- response = client.chat.completions.create(
1523
- model=MODEL,
1524
- messages=[
1525
- {"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
1526
- {"role": "user", "content": [
1527
- {"type": "text", "text": user_prompt},
1528
- {"type": "image_url", "image_url": {
1529
- "url": f"data:image/png;base64,{base64_image}"}
1530
- }
1531
- ]}
1532
- ],
1533
- temperature=0.0,
1534
- )
1535
- image_response = response.choices[0].message.content
1536
- st.markdown(image_response)
1537
-
1538
- # Save markdown on image AI output from gpt4o
1539
- filename_md = generate_filename(image_input.name + '- ' + image_response, "md")
1540
- # Save markdown on image AI output from gpt4o
1541
- filename_png = filename_md.replace('.md', '.' + image_input.name.split('.')[-1])
1542
-
1543
- create_file(filename_md, image_response, '', True) #create_file() # create_file() 3 required positional arguments: 'filename', 'prompt', and 'response'
1544
-
1545
- with open(filename_md, "w", encoding="utf-8") as f:
1546
- f.write(image_response)
1547
-
1548
- # Extract boldface terms from image_response then autoname save file
1549
- #boldface_terms = extract_boldface_terms(image_response)
1550
- boldface_terms = extract_title(image_response).replace(':','')
1551
- filename_stem, extension = os.path.splitext(image_input.name)
1552
- filename_img = f"{filename_stem} {''.join(boldface_terms)}{extension}"
1553
- newfilename = save_image(image_input, filename_img)
1554
- filename_md = newfilename.replace('.png', '.md')
1555
- create_file(filename_md, '', image_response, True)
1556
-
1557
- return image_response
1558
-
1559
- def create_audio_file(filename, audio_data, should_save):
1560
- if should_save:
1561
- with open(filename, "wb") as file:
1562
- file.write(audio_data.getvalue())
1563
- st.success(f"Audio file saved as {filename}")
1564
- else:
1565
- st.warning("Audio file not saved.")
1566
-
1567
- def process_audio(audio_input, text_input):
1568
- if audio_input:
1569
- transcription = client.audio.transcriptions.create(
1570
- model="whisper-1",
1571
- file=audio_input,
1572
- )
1573
- st.session_state.messages.append({"role": "user", "content": transcription.text})
1574
- with st.chat_message("assistant"):
1575
- st.markdown(transcription.text)
1576
-
1577
- SpeechSynthesis(transcription.text)
1578
- filename = generate_filename(transcription.text, "wav")
1579
-
1580
- create_audio_file(filename, audio_input, should_save)
1581
-
1582
- #SpeechSynthesis(transcription.text)
1583
-
1584
- filename = generate_filename(transcription.text, "md")
1585
- create_file(filename, transcription.text, transcription.text, should_save)
1586
- #st.markdown(response.choices[0].message.content)
1587
-
1588
- def process_audio_for_video(video_input):
1589
- if video_input:
1590
- try:
1591
- transcription = client.audio.transcriptions.create(
1592
- model="whisper-1",
1593
- file=video_input,
1594
- )
1595
- response = client.chat.completions.create(
1596
- model=MODEL,
1597
- messages=[
1598
- {"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""},
1599
- {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription}"}],}
1600
- ],
1601
- temperature=0,
1602
- )
1603
- st.markdown(response.choices[0].message.content)
1604
- return response.choices[0].message.content
1605
- except:
1606
- st.write('No transcript')
1607
-
1608
- def save_video(video_file):
1609
- # Save the uploaded video file
1610
- with open(video_file.name, "wb") as f:
1611
- f.write(video_file.getbuffer())
1612
- return video_file.name
1613
-
1614
- def process_video(video_path, seconds_per_frame=2):
1615
- base64Frames = []
1616
- base_video_path, _ = os.path.splitext(video_path)
1617
- video = cv2.VideoCapture(video_path)
1618
- total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
1619
- fps = video.get(cv2.CAP_PROP_FPS)
1620
- frames_to_skip = int(fps * seconds_per_frame)
1621
- curr_frame = 0
1622
-
1623
- # Loop through the video and extract frames at specified sampling rate
1624
- while curr_frame < total_frames - 1:
1625
- video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
1626
- success, frame = video.read()
1627
- if not success:
1628
- break
1629
- _, buffer = cv2.imencode(".jpg", frame)
1630
- base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
1631
- curr_frame += frames_to_skip
1632
-
1633
- video.release()
1634
-
1635
- # Extract audio from video
1636
- audio_path = f"{base_video_path}.mp3"
1637
- try:
1638
- clip = VideoFileClip(video_path)
1639
-
1640
- clip.audio.write_audiofile(audio_path, bitrate="32k")
1641
- clip.audio.close()
1642
-
1643
- clip.close()
1644
- except:
1645
- st.write('No audio track found, moving on..')
1646
-
1647
-
1648
- print(f"Extracted {len(base64Frames)} frames")
1649
- print(f"Extracted audio to {audio_path}")
1650
-
1651
- return base64Frames, audio_path
1652
-
1653
- def process_audio_and_video(video_input):
1654
- if video_input is not None:
1655
- # Save the uploaded video file
1656
- video_path = save_video(video_input )
1657
-
1658
- # Process the saved video
1659
- base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
1660
-
1661
- # Get the transcript for the video model call
1662
- transcript = process_audio_for_video(video_input)
1663
-
1664
- # Generate a summary with visual and audio
1665
- response = client.chat.completions.create(
1666
- model=MODEL,
1667
- messages=[
1668
- {"role": "system", "content": """You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"""},
1669
- {"role": "user", "content": [
1670
- "These are the frames from the video.",
1671
- *map(lambda x: {"type": "image_url",
1672
- "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
1673
- {"type": "text", "text": f"The audio transcription is: {transcript}"}
1674
- ]},
1675
- ],
1676
- temperature=0,
1677
- )
1678
- results = response.choices[0].message.content
1679
- st.markdown(results)
1680
-
1681
- if transcript:
1682
- filename = generate_filename(transcript, "md")
1683
- create_file(filename, transcript, results, should_save)
1684
-
1685
 
1686
 
1687
  def main():
 
53
  }
54
  )
55
 
56
+ # My Inference API Copy
57
+ API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama
58
+ # Meta's Original - Chat HF Free Version:
59
+ #API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
60
+ API_KEY = os.getenv('API_KEY')
61
+ MODEL1="meta-llama/Llama-2-7b-chat-hf"
62
+ MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
63
+ HF_KEY = os.getenv('HF_KEY')
64
+ headers = {
65
+ "Authorization": f"Bearer {HF_KEY}",
66
+ "Content-Type": "application/json"
67
+ }
68
+ key = os.getenv('OPENAI_API_KEY')
69
+ prompt = "...."
70
+ should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")
71
+
72
+
73
+
74
  client = OpenAI(api_key= os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
75
  MODEL = "gpt-4o-2024-05-13"
76
  if "openai_model" not in st.session_state:
 
112
 
113
 
114
 
115
+
116
+
117
+
118
+
119
+ # GPT4o documentation
120
+ # 1. Cookbook: https://cookbook.openai.com/examples/gpt4o/introduction_to_gpt4o
121
+ # 2. Configure your Project and Orgs to limit/allow Models: https://platform.openai.com/settings/organization/general
122
+ # 3. Watch your Billing! https://platform.openai.com/settings/organization/billing/overview
123
+
124
+
125
+ # Set API key and organization ID from environment variables
126
+
127
+ openai.api_key = os.getenv('OPENAI_API_KEY')
128
+ openai.organization = os.getenv('OPENAI_ORG_ID')
129
+ client = OpenAI(api_key= os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
130
+
131
+ # Define the model to be used
132
+ #MODEL = "gpt-4o"
133
+ MODEL = "gpt-4o-2024-05-13"
134
+
135
+
136
+
137
+
138
+
139
+ # 5. Auto name generated output files from time and content
140
+ def generate_filename(prompt, file_type):
141
+ central = pytz.timezone('US/Central')
142
+ safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
143
+ replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
144
+ safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:240] # 255 is linux max, 260 is windows max
145
+ #safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45]
146
+ return f"{safe_date_time}_{safe_prompt}.{file_type}"
147
+
148
+
149
+
150
+ def process_text(text_input):
151
+ if text_input:
152
+
153
+ st.session_state.messages.append({"role": "user", "content": text_input})
154
+
155
+ with st.chat_message("user"):
156
+ st.markdown(text_input)
157
+
158
+ with st.chat_message("assistant"):
159
+ completion = client.chat.completions.create(
160
+ model=MODEL,
161
+ messages=[
162
+ {"role": m["role"], "content": m["content"]}
163
+ for m in st.session_state.messages
164
+ ],
165
+ stream=False
166
+ )
167
+ return_text = completion.choices[0].message.content
168
+ st.write("Assistant: " + return_text)
169
+ filename = generate_filename(text_input, "md")
170
+ create_file(filename, text_input, return_text, should_save)
171
+ st.session_state.messages.append({"role": "assistant", "content": return_text})
172
+
173
+ #st.write("Assistant: " + completion.choices[0].message.content)
174
+
175
+ def create_file(filename, prompt, response, is_image=False):
176
+ with open(filename, "w", encoding="utf-8") as f:
177
+ f.write(prompt + "\n\n" + response)
178
+
179
+ def save_image_old2(image, filename):
180
+ with open(filename, "wb") as f:
181
+ f.write(image.getbuffer())
182
+
183
+ # Now filename length protected for linux and windows filename lengths
184
+ def save_image(image, filename):
185
+ max_filename_length = 250
186
+ filename_stem, extension = os.path.splitext(filename)
187
+ truncated_stem = filename_stem[:max_filename_length - len(extension)] if len(filename) > max_filename_length else filename_stem
188
+ filename = f"{truncated_stem}{extension}"
189
+ with open(filename, "wb") as f:
190
+ f.write(image.getbuffer())
191
+ return filename
192
+
193
+ def extract_boldface_terms(text):
194
+ return re.findall(r'\*\*(.*?)\*\*', text)
195
+
196
+ def extract_title(text):
197
+ boldface_terms = re.findall(r'\*\*(.*?)\*\*', text)
198
+ if boldface_terms:
199
+ title = ' '.join(boldface_terms)
200
+ else:
201
+ title = re.sub(r'[^a-zA-Z0-9_\-]', ' ', text[-200:])
202
+ return title[-200:]
203
+
204
+ def process_image(image_input, user_prompt):
205
+ if image_input:
206
+ st.markdown('Processing image: ' + image_input.name )
207
+ if image_input:
208
+ base64_image = base64.b64encode(image_input.read()).decode("utf-8")
209
+ response = client.chat.completions.create(
210
+ model=MODEL,
211
+ messages=[
212
+ {"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
213
+ {"role": "user", "content": [
214
+ {"type": "text", "text": user_prompt},
215
+ {"type": "image_url", "image_url": {
216
+ "url": f"data:image/png;base64,{base64_image}"}
217
+ }
218
+ ]}
219
+ ],
220
+ temperature=0.0,
221
+ )
222
+ image_response = response.choices[0].message.content
223
+ st.markdown(image_response)
224
+
225
+ # Save markdown on image AI output from gpt4o
226
+ filename_md = generate_filename(image_input.name + '- ' + image_response, "md")
227
+ # Save markdown on image AI output from gpt4o
228
+ filename_png = filename_md.replace('.md', '.' + image_input.name.split('.')[-1])
229
+
230
+ create_file(filename_md, image_response, '', True) #create_file() # create_file() 3 required positional arguments: 'filename', 'prompt', and 'response'
231
+
232
+ with open(filename_md, "w", encoding="utf-8") as f:
233
+ f.write(image_response)
234
+
235
+ # Extract boldface terms from image_response then autoname save file
236
+ #boldface_terms = extract_boldface_terms(image_response)
237
+ boldface_terms = extract_title(image_response).replace(':','')
238
+ filename_stem, extension = os.path.splitext(image_input.name)
239
+ filename_img = f"{filename_stem} {''.join(boldface_terms)}{extension}"
240
+ newfilename = save_image(image_input, filename_img)
241
+ filename_md = newfilename.replace('.png', '.md')
242
+ create_file(filename_md, '', image_response, True)
243
+
244
+ return image_response
245
+
246
+ def create_audio_file(filename, audio_data, should_save):
247
+ if should_save:
248
+ with open(filename, "wb") as file:
249
+ file.write(audio_data.getvalue())
250
+ st.success(f"Audio file saved as {filename}")
251
+ else:
252
+ st.warning("Audio file not saved.")
253
+
254
+ def process_audio(audio_input, text_input):
255
+ if audio_input:
256
+ transcription = client.audio.transcriptions.create(
257
+ model="whisper-1",
258
+ file=audio_input,
259
+ )
260
+ st.session_state.messages.append({"role": "user", "content": transcription.text})
261
+ with st.chat_message("assistant"):
262
+ st.markdown(transcription.text)
263
+
264
+ SpeechSynthesis(transcription.text)
265
+ filename = generate_filename(transcription.text, "wav")
266
+
267
+ create_audio_file(filename, audio_input, should_save)
268
+
269
+ #SpeechSynthesis(transcription.text)
270
+
271
+ filename = generate_filename(transcription.text, "md")
272
+ create_file(filename, transcription.text, transcription.text, should_save)
273
+ #st.markdown(response.choices[0].message.content)
274
+
275
+ def process_audio_for_video(video_input):
276
+ if video_input:
277
+ try:
278
+ transcription = client.audio.transcriptions.create(
279
+ model="whisper-1",
280
+ file=video_input,
281
+ )
282
+ response = client.chat.completions.create(
283
+ model=MODEL,
284
+ messages=[
285
+ {"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""},
286
+ {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription}"}],}
287
+ ],
288
+ temperature=0,
289
+ )
290
+ st.markdown(response.choices[0].message.content)
291
+ return response.choices[0].message.content
292
+ except:
293
+ st.write('No transcript')
294
+
295
+ def save_video(video_file):
296
+ # Save the uploaded video file
297
+ with open(video_file.name, "wb") as f:
298
+ f.write(video_file.getbuffer())
299
+ return video_file.name
300
+
301
+ def process_video(video_path, seconds_per_frame=2):
302
+ base64Frames = []
303
+ base_video_path, _ = os.path.splitext(video_path)
304
+ video = cv2.VideoCapture(video_path)
305
+ total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
306
+ fps = video.get(cv2.CAP_PROP_FPS)
307
+ frames_to_skip = int(fps * seconds_per_frame)
308
+ curr_frame = 0
309
+
310
+ # Loop through the video and extract frames at specified sampling rate
311
+ while curr_frame < total_frames - 1:
312
+ video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
313
+ success, frame = video.read()
314
+ if not success:
315
+ break
316
+ _, buffer = cv2.imencode(".jpg", frame)
317
+ base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
318
+ curr_frame += frames_to_skip
319
+
320
+ video.release()
321
+
322
+ # Extract audio from video
323
+ audio_path = f"{base_video_path}.mp3"
324
+ try:
325
+ clip = VideoFileClip(video_path)
326
+
327
+ clip.audio.write_audiofile(audio_path, bitrate="32k")
328
+ clip.audio.close()
329
+
330
+ clip.close()
331
+ except:
332
+ st.write('No audio track found, moving on..')
333
+
334
+
335
+ print(f"Extracted {len(base64Frames)} frames")
336
+ print(f"Extracted audio to {audio_path}")
337
+
338
+ return base64Frames, audio_path
339
+
340
+ def process_audio_and_video(video_input):
341
+ if video_input is not None:
342
+ # Save the uploaded video file
343
+ video_path = save_video(video_input )
344
+
345
+ # Process the saved video
346
+ base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
347
+
348
+ # Get the transcript for the video model call
349
+ transcript = process_audio_for_video(video_input)
350
+
351
+ # Generate a summary with visual and audio
352
+ response = client.chat.completions.create(
353
+ model=MODEL,
354
+ messages=[
355
+ {"role": "system", "content": """You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"""},
356
+ {"role": "user", "content": [
357
+ "These are the frames from the video.",
358
+ *map(lambda x: {"type": "image_url",
359
+ "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
360
+ {"type": "text", "text": f"The audio transcription is: {transcript}"}
361
+ ]},
362
+ ],
363
+ temperature=0,
364
+ )
365
+ results = response.choices[0].message.content
366
+ st.markdown(results)
367
+
368
+ if transcript:
369
+ filename = generate_filename(transcript, "md")
370
+ create_file(filename, transcript, results, should_save)
371
+
372
+
373
+
374
+
375
+
376
+
377
+
378
  # 🔍Search Glossary
379
  # @st.cache_resource
380
  def search_glossary(query):
 
909
  if next_action=='search':
910
  filesearch = PromptPrefix + file_contents
911
  st.markdown(filesearch)
912
+ #search_glossary(filesearch)
913
+
914
+ process_text(filesearch)
915
 
916
  if next_action=='md':
917
  st.markdown(file_contents)
 
1152
  key = f"{category}_{game}_{term}".replace(' ', '_').lower()
1153
  score = load_score(key)
1154
  if st.button(f"{game_emoji} {category} {game} {term} {score}", key=key):
1155
+ newscore = update_score(key.replace('?',''))
1156
+ query_prefix = f"{category_emoji} {game_emoji} ** {category} - {game} - {term} - **"
1157
+ st.markdown("Scored " + query_prefix + ' with score ' + str(newscore) + '.')
1158
+
1159
+
1160
+ def get_all_query_params(key):
1161
+ return st.query_params().get(key, [])
1162
+
1163
+ def clear_query_params():
1164
+ st.query_params()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165
 
1166
 
1167
 
 
1218
  def get_output(prompt):
1219
  return query({"inputs": prompt})
1220
 
 
 
 
 
 
 
 
 
 
1221
  # 6. Speech transcription via OpenAI service
1222
  def transcribe_audio(openai_key, file_path, model):
1223
  openai.api_key = openai_key
 
1702
  st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
1703
 
1704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1705
 
1706
 
1707
  def main():