awacke1 commited on
Commit
b642de5
1 Parent(s): 6c3a43a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -40
app.py CHANGED
@@ -92,6 +92,44 @@ def SpeechSynthesis(result):
92
  '''
93
  components.html(documentHTML5, width=1280, height=300)
94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  def parse_to_markdown(text):
96
  return text
97
 
@@ -587,13 +625,10 @@ def FileSidebar():
587
  if new_file_content_area != file_contents:
588
  st.markdown(new_file_content_area) #changed
589
 
590
- if st.button("🔍 Run AI Meta Strategy", key="filecontentssearch"):
591
- #search_glossary(file_content_area)
592
- filesearch = PromptPrefix + file_content_area
593
  st.markdown(filesearch)
594
-
595
- if st.button(key=rerun, label='🔍AI Search' ):
596
- search_glossary(filesearch)
597
 
598
  if next_action=='md':
599
  st.markdown(file_contents)
@@ -628,7 +663,7 @@ def FileSidebar():
628
  #search_glossary(file_contents)
629
  filesearch = PromptPrefix2 + file_content_area
630
  st.markdown(filesearch)
631
- if st.button(key=rerun, label='🔍Re-Code' ):
632
  #search_glossary(filesearch)
633
  search_arxiv(filesearch)
634
 
@@ -723,39 +758,6 @@ def load_score(key):
723
  return 0
724
 
725
 
726
- # 🔍Search Glossary
727
- @st.cache_resource
728
- def search_glossary(query):
729
- all=""
730
- st.markdown(f"- {query}")
731
-
732
- # 🔍Run 1 - ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
733
- client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
734
- response2 = client.predict(
735
- query, # str in 'parameter_13' Textbox component
736
- #"mistralai/Mixtral-8x7B-Instruct-v0.1", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
737
- #"mistralai/Mistral-7B-Instruct-v0.2", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
738
- "google/gemma-7b-it", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
739
- True, # bool in 'Stream output' Checkbox component
740
- api_name="/ask_llm"
741
- )
742
- st.write('🔍Run of Multi-Agent System Paper Summary Spec is Complete')
743
- st.markdown(response2)
744
-
745
- # ArXiv searcher ~-<>-~ Paper References - Update with RAG
746
- client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
747
- response1 = client.predict(
748
- query,
749
- 10,
750
- "Semantic Search - up to 10 Mar 2024", # Literal['Semantic Search - up to 10 Mar 2024', 'Arxiv Search - Latest - (EXPERIMENTAL)'] in 'Search Source' Dropdown component
751
- "mistralai/Mixtral-8x7B-Instruct-v0.1", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
752
- api_name="/update_with_rag_md"
753
- )
754
- st.write('🔍Run of Multi-Agent System Paper References is Complete')
755
- responseall = response2 + response1[0] + response1[1]
756
- st.markdown(responseall)
757
- return responseall
758
-
759
 
760
  # Function to display the glossary in a structured format
761
  def display_glossary(glossary, area):
 
92
  '''
93
  components.html(documentHTML5, width=1280, height=300)
94
 
95
+
96
+
97
+ # 🔍Search Glossary
98
+ # @st.cache_resource
99
+ def search_glossary(query):
100
+ all=""
101
+ st.markdown(f"- {query}")
102
+
103
+ # 🔍Run 1 - ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
104
+ client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
105
+ response2 = client.predict(
106
+ query, # str in 'parameter_13' Textbox component
107
+ #"mistralai/Mixtral-8x7B-Instruct-v0.1", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
108
+ #"mistralai/Mistral-7B-Instruct-v0.2", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
109
+ "google/gemma-7b-it", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
110
+ True, # bool in 'Stream output' Checkbox component
111
+ api_name="/ask_llm"
112
+ )
113
+ st.write('🔍Run of Multi-Agent System Paper Summary Spec is Complete')
114
+ st.markdown(response2)
115
+
116
+ # ArXiv searcher ~-<>-~ Paper References - Update with RAG
117
+ client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
118
+ response1 = client.predict(
119
+ query,
120
+ 10,
121
+ "Semantic Search - up to 10 Mar 2024", # Literal['Semantic Search - up to 10 Mar 2024', 'Arxiv Search - Latest - (EXPERIMENTAL)'] in 'Search Source' Dropdown component
122
+ "mistralai/Mixtral-8x7B-Instruct-v0.1", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component
123
+ api_name="/update_with_rag_md"
124
+ )
125
+ st.write('🔍Run of Multi-Agent System Paper References is Complete')
126
+ responseall = response2 + response1[0] + response1[1]
127
+ st.markdown(responseall)
128
+ return responseall
129
+
130
+
131
+
132
+
133
  def parse_to_markdown(text):
134
  return text
135
 
 
625
  if new_file_content_area != file_contents:
626
  st.markdown(new_file_content_area) #changed
627
 
628
+ if next_action=='search':
629
+ filesearch = PromptPrefix + file_contents
 
630
  st.markdown(filesearch)
631
+ search_glossary(filesearch)
 
 
632
 
633
  if next_action=='md':
634
  st.markdown(file_contents)
 
663
  #search_glossary(file_contents)
664
  filesearch = PromptPrefix2 + file_content_area
665
  st.markdown(filesearch)
666
+ if st.button(key='rerun', label='🔍Re-Code' ):
667
  #search_glossary(filesearch)
668
  search_arxiv(filesearch)
669
 
 
758
  return 0
759
 
760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
761
 
762
  # Function to display the glossary in a structured format
763
  def display_glossary(glossary, area):