CodeCompetitionClaudeVsGPT / backup10.app.py
awacke1's picture
Update backup10.app.py
688cdbe verified
import streamlit as st
import pandas as pd
import numpy as np
import json
import os
import glob
import random
from pathlib import Path
from datetime import datetime
import edge_tts
import asyncio
import requests
import streamlit.components.v1 as components
import base64
import re
from xml.etree import ElementTree as ET
from datasets import load_dataset
# -------------------- Configuration & Constants --------------------
USER_NAMES = [
"Aria", "Guy", "Sonia", "Tony", "Jenny", "Davis", "Libby", "Clara", "Liam", "Natasha", "William"
]
ENGLISH_VOICES = [
"en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural", "en-GB-TonyNeural",
"en-US-JennyNeural", "en-US-DavisNeural", "en-GB-LibbyNeural", "en-CA-ClaraNeural",
"en-CA-LiamNeural", "en-AU-NatashaNeural", "en-AU-WilliamNeural"
]
# Map each user to a corresponding voice
USER_VOICES = dict(zip(USER_NAMES, ENGLISH_VOICES))
ROWS_PER_PAGE = 100
SAVED_INPUTS_DIR = "saved_inputs"
os.makedirs(SAVED_INPUTS_DIR, exist_ok=True)
SESSION_VARS = {
'search_history': [],
'last_voice_input': "",
'transcript_history': [],
'should_rerun': False,
'search_columns': [],
'initial_search_done': False,
'arxiv_last_query': "",
'dataset_loaded': False,
'current_page': 0,
'data_cache': None,
'dataset_info': None,
'nps_submitted': False,
'nps_last_shown': None,
'old_val': None,
'voice_text': None,
'user_name': random.choice(USER_NAMES),
'max_items': 100,
'global_voice': "en-US-AriaNeural",
'last_arxiv_input': None
}
for var, default in SESSION_VARS.items():
if var not in st.session_state:
st.session_state[var] = default
def create_voice_component():
mycomponent = components.declare_component(
"mycomponent",
path="mycomponent"
)
return mycomponent
def clean_for_speech(text: str) -> str:
text = text.replace("\n", " ")
text = text.replace("</s>", " ")
text = text.replace("#", "")
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural"):
text = clean_for_speech(text)
if not text.strip():
return None
communicate = edge_tts.Communicate(text, voice)
out_fn = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}.mp3"
await communicate.save(out_fn)
return out_fn
def speak_with_edge_tts(text, voice="en-US-AriaNeural"):
return asyncio.run(edge_tts_generate_audio(text, voice))
def play_and_download_audio(file_path):
if file_path and os.path.exists(file_path):
st.audio(file_path)
dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
st.markdown(dl_link, unsafe_allow_html=True)
def generate_filename(prefix, text):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
safe_text = re.sub(r'[^\w\s-]', '', text[:50]).strip().lower()
safe_text = re.sub(r'[-\s]+', '-', safe_text)
return f"{prefix}_{timestamp}_{safe_text}.md"
def save_input_as_md(user_name, text, prefix="input"):
if not text.strip():
return
fn = generate_filename(prefix, text)
full_path = os.path.join(SAVED_INPUTS_DIR, fn)
with open(full_path, 'w', encoding='utf-8') as f:
f.write(f"# User: {user_name}\n")
f.write(f"**Timestamp:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
f.write(text)
return full_path
def save_response_as_md(user_name, text, prefix="response"):
if not text.strip():
return
fn = generate_filename(prefix, text)
full_path = os.path.join(SAVED_INPUTS_DIR, fn)
with open(full_path, 'w', encoding='utf-8') as f:
f.write(f"# User: {user_name}\n")
f.write(f"**Timestamp:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
f.write(text)
return full_path
def list_saved_inputs():
files = sorted(glob.glob(os.path.join(SAVED_INPUTS_DIR, "*.md")))
return files
def parse_md_file(fpath):
user_line = ""
ts_line = ""
content_lines = []
with open(fpath, 'r', encoding='utf-8') as f:
lines = f.readlines()
for line in lines:
if line.startswith("# User:"):
user_line = line.replace("# User:", "").strip()
elif line.startswith("**Timestamp:**"):
ts_line = line.replace("**Timestamp:**", "").strip()
else:
content_lines.append(line.strip())
content = "\n".join(content_lines).strip()
return user_line, ts_line, content
def arxiv_search(query, max_results=3):
base_url = "http://export.arxiv.org/api/query"
params = {
'search_query': query.replace(' ', '+'),
'start': 0,
'max_results': max_results
}
response = requests.get(base_url, params=params, timeout=30)
if response.status_code == 200:
root = ET.fromstring(response.text)
ns = {"a": "http://www.w3.org/2005/Atom"}
entries = root.findall('a:entry', ns)
results = []
for entry in entries:
title = entry.find('a:title', ns).text.strip()
summary = entry.find('a:summary', ns).text.strip()
summary_short = summary[:300] + "..."
results.append((title, summary_short))
return results
return []
def summarize_arxiv_results(results):
lines = []
for i, (title, summary) in enumerate(results, 1):
lines.append(f"Result {i}: {title}\n{summary}\n")
return "\n\n".join(lines)
def simple_dataset_search(query, df):
if df.empty or not query.strip():
return pd.DataFrame()
query_terms = query.lower().split()
matches = []
for idx, row in df.iterrows():
text_parts = []
for col in df.columns:
val = row[col]
if isinstance(val, str):
text_parts.append(val.lower())
elif isinstance(val, (int, float)):
text_parts.append(str(val))
full_text = " ".join(text_parts)
if any(qt in full_text for qt in query_terms):
matches.append(row)
if matches:
return pd.DataFrame(matches)
return pd.DataFrame()
from datasets import load_dataset
@st.cache_data
def load_dataset_page(dataset_id, token, page, rows_per_page):
try:
start_idx = page * rows_per_page
end_idx = start_idx + rows_per_page
dataset = load_dataset(
dataset_id,
token=token,
streaming=False,
split=f'train[{start_idx}:{end_idx}]'
)
return pd.DataFrame(dataset)
except:
return pd.DataFrame()
class SimpleDatasetSearcher:
def __init__(self, dataset_id="tomg-group-umd/cinepile"):
self.dataset_id = dataset_id
self.token = os.environ.get('DATASET_KEY')
def load_page(self, page=0):
return load_dataset_page(self.dataset_id, self.token, page, ROWS_PER_PAGE)
def concatenate_mp3(files, output_file):
# Naive binary concatenation of MP3 files
with open(output_file, 'wb') as outfile:
for f in files:
with open(f, 'rb') as infile:
outfile.write(infile.read())
def main():
st.title("πŸŽ™οΈ Voice Chat & Search")
# Sidebar
with st.sidebar:
# Editable user name
st.session_state['user_name'] = st.selectbox("Current User:", USER_NAMES, index=0)
st.session_state['max_items'] = st.number_input("Max Items per search iteration:", min_value=1, max_value=1000, value=st.session_state['max_items'])
st.subheader("πŸ“ Saved Inputs & Responses")
saved_files = list_saved_inputs()
for fpath in saved_files:
user, ts, content = parse_md_file(fpath)
fname = os.path.basename(fpath)
st.write(f"- {fname} (User: {user})")
# Create voice component for input
voice_component = create_voice_component()
voice_val = voice_component(my_input_value="Start speaking...")
# Tabs
tab1, tab2, tab3, tab4 = st.tabs(["πŸ—£οΈ Voice Chat History", "πŸ“š ArXiv Search", "πŸ“Š Dataset Search", "βš™οΈ Settings"])
# ------------------ Voice Chat History -------------------------
with tab1:
st.subheader("Voice Chat History")
files = list_saved_inputs()
conversation = []
for fpath in files:
user, ts, content = parse_md_file(fpath)
conversation.append((user, ts, content, fpath))
# Enumerate to ensure unique keys
for i, (user, ts, content, fpath) in enumerate(reversed(conversation), start=1):
with st.expander(f"{ts} - {user}", expanded=False):
st.write(content)
# Make button key unique by including i
if st.button(f"πŸ”Š Read Aloud {ts}-{user}", key=f"read_{i}_{fpath}"):
voice = USER_VOICES.get(user, "en-US-AriaNeural")
audio_file = speak_with_edge_tts(content, voice=voice)
if audio_file:
play_and_download_audio(audio_file)
# Read entire conversation
if st.button("πŸ“œ Read Conversation", key="read_conversation_all"):
# conversation is currently reversed, re-reverse to get chronological
conversation_chrono = list(reversed(conversation))
mp3_files = []
for user, ts, content, fpath in conversation_chrono:
voice = USER_VOICES.get(user, "en-US-AriaNeural")
audio_file = speak_with_edge_tts(content, voice=voice)
if audio_file:
mp3_files.append(audio_file)
st.write(f"**{user} ({ts}):**")
play_and_download_audio(audio_file)
if mp3_files:
combined_file = f"full_conversation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
concatenate_mp3(mp3_files, combined_file)
st.write("**Full Conversation Audio:**")
play_and_download_audio(combined_file)
# ------------------ ArXiv Search -------------------------
with tab2:
st.subheader("ArXiv Search")
edited_input = st.text_area("Enter or Edit Search Query:", value=(voice_val.strip() if voice_val else ""), height=100)
autorun = st.checkbox("⚑ Auto-Run", value=True)
run_arxiv = st.button("πŸ” ArXiv Search", key="run_arxiv_button")
input_changed = (edited_input != st.session_state.get('old_val'))
should_run_arxiv = False
if autorun and input_changed and edited_input.strip():
should_run_arxiv = True
if run_arxiv and edited_input.strip():
should_run_arxiv = True
if should_run_arxiv and st.session_state['last_arxiv_input'] != edited_input:
st.session_state['old_val'] = edited_input
st.session_state['last_arxiv_input'] = edited_input
save_input_as_md(st.session_state['user_name'], edited_input, prefix="input")
with st.spinner("Searching ArXiv..."):
results = arxiv_search(edited_input)
if results:
summary = summarize_arxiv_results(results)
save_response_as_md(st.session_state['user_name'], summary, prefix="response")
st.write(summary)
# Play summary aloud
voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural")
audio_file = speak_with_edge_tts(summary, voice=voice)
if audio_file:
play_and_download_audio(audio_file)
else:
st.warning("No results found on ArXiv.")
# ------------------ Dataset Search -------------------------
with tab3:
st.subheader("Dataset Search")
ds_searcher = SimpleDatasetSearcher()
query = st.text_input("Enter dataset search query:")
run_ds_search = st.button("Search Dataset", key="ds_search_button")
num_results = st.slider("Max results:", 1, 100, 20, key="ds_max_results")
if run_ds_search and query.strip():
with st.spinner("Searching dataset..."):
df = ds_searcher.load_page(0)
results = simple_dataset_search(query, df)
if not results.empty:
st.write(f"Found {len(results)} results:")
shown = 0
for i, (_, row) in enumerate(results.iterrows(), 1):
if shown >= num_results:
break
with st.expander(f"Result {i}", expanded=(i==1)):
for k, v in row.items():
st.write(f"**{k}:** {v}")
shown += 1
else:
st.warning("No matching results found.")
# ------------------ Settings Tab -------------------------
with tab4:
st.subheader("Settings")
if st.button("πŸ—‘οΈ Clear Search History", key="clear_history"):
# Delete all files
for fpath in list_saved_inputs():
os.remove(fpath)
st.session_state['search_history'] = []
st.success("Search history cleared for everyone!")
st.rerun()
if __name__ == "__main__":
main()