Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import torch | |
import transformers | |
import gradio as gr | |
from ragatouille import RAGPretrainedModel | |
from huggingface_hub import InferenceClient | |
import re | |
from datetime import datetime | |
import json | |
import arxiv | |
from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search | |
import os | |
import glob | |
# ποΈ App configuration - tweak these knobs for maximum brain power! π§ πͺ | |
retrieve_results = 20 | |
show_examples = True | |
llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] | |
# π LLM acting instructions - "To be, or not to be... verbose" π€ | |
generate_kwargs = dict( | |
temperature = None, | |
max_new_tokens = 512, | |
top_p = None, | |
do_sample = False, | |
) | |
# π§ββοΈ Summoning the RAG model - "Accio knowledge!" πβ¨ | |
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert") | |
try: | |
gr.Info("ποΈ Setting up the knowledge retriever, please wait... π°οΈ") | |
rag_initial_output = RAG.search("What is Generative AI in Healthcare?", k = 1) | |
gr.Info("π Retriever is up and running! Time to flex those brain muscles! πͺπ§ ") | |
except: | |
gr.Warning("π± Oh no! The retriever took a coffee break. Try again later! β") | |
# π The grand introduction - roll out the red carpet! π | |
mark_text = '# π©Ίπ Search Results\n' | |
header_text = "## πArxivπPaperπSearch - π΅οΈββοΈ Uncover, π Summarize, and 𧩠Solve π¬ Research π€β Puzzles βοΈ with π Papers and π€ RAG AI π§ \n" | |
# π°οΈ Time travel to find when our knowledge was last updated π | |
try: | |
with open("README.md", "r") as f: | |
mdfile = f.read() | |
date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}' | |
match = re.search(date_pattern, mdfile) | |
date = match.group().split(': ')[1] | |
formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y') | |
header_text += f'Index Last Updated: {formatted_date}\n' | |
index_info = f"Semantic Search - up to {formatted_date}" | |
except: | |
index_info = "Semantic Search" | |
database_choices = [index_info, 'Arxiv Search - Latest - (EXPERIMENTAL)'] | |
# π¦ Arxiv API - the wise old owl of academic knowledge π | |
arx_client = arxiv.Client() | |
is_arxiv_available = True | |
check_arxiv_result = get_arxiv_live_search("What is Self Rewarding AI and how can it be used in Multi-Agent Systems?", arx_client, retrieve_results) | |
if len(check_arxiv_result) == 0: | |
is_arxiv_available = False | |
print("π΄ Arxiv search is taking a nap, switching to default search ...") | |
database_choices = [index_info] | |
# π Show examples - a teaser trailer for your brain! πΏπ§ | |
sample_outputs = { | |
'output_placeholder': 'The LLM will provide an answer to your question here...', | |
'search_placeholder': ''' | |
1. What is MoE? | |
2. What are Multi Agent Systems? | |
3. What is Self Rewarding AI? | |
4. What is Semantic and Episodic memory? | |
5. What is AutoGen? | |
6. What is ChatDev? | |
7. What is Omniverse? | |
8. What is Lumiere? | |
9. What is SORA? | |
''' | |
} | |
output_placeholder = sample_outputs['output_placeholder'] | |
md_text_initial = sample_outputs['search_placeholder'] | |
# π§Ή Clean up the RAG output - nobody likes a messy mind! π§Όπ§ | |
def rag_cleaner(inp): | |
rank = inp['rank'] | |
title = inp['document_metadata']['title'] | |
content = inp['content'] | |
date = inp['document_metadata']['_time'] | |
return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}" | |
# π Craft the perfect prompt - it's showtime for the LLM! π¬ | |
def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'): | |
if formatted: | |
sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and let's think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates." | |
message = f"Question: {question}" | |
if 'mistralai' in llm_model_picked: | |
return f"<s>" + f"[INST] {sys_instruction}" + f" {message}[/INST]" | |
elif 'gemma' in llm_model_picked: | |
return f"<bos><start_of_turn>user\n{sys_instruction}" + f" {message}<end_of_turn>\n" | |
return f"Context:\n {context} \n Given the following info, take a deep breath and let's think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n" | |
# π΅οΈββοΈ Get those juicy references - time to go treasure hunting! ππ | |
def get_references(question, retriever, k = retrieve_results): | |
rag_out = retriever.search(query=question, k=k) | |
return rag_out | |
def get_rag(message): | |
return get_references(message, RAG) | |
# π€ Save the response and read it aloud - it's karaoke time for your brain! π§ πΆ | |
def SaveResponseAndRead(result): | |
documentHTML5=''' | |
<!DOCTYPE html> | |
<html> | |
<head> | |
<title>Read It Aloud</title> | |
<script type="text/javascript"> | |
function readAloud() { | |
const text = document.getElementById("textArea").value; | |
const speech = new SpeechSynthesisUtterance(text); | |
window.speechSynthesis.speak(speech); | |
} | |
</script> | |
</head> | |
<body> | |
<h1>π Read It Aloud</h1> | |
<textarea id="textArea" rows="10" cols="80"> | |
''' | |
documentHTML5 = documentHTML5 + result | |
documentHTML5 = documentHTML5 + ''' | |
</textarea> | |
<br> | |
<button onclick="readAloud()">π Read Aloud</button> | |
</body> | |
</html> | |
''' | |
gr.HTML(documentHTML5) | |
# π File management functions - because even AI needs a filing system! ποΈπ€ | |
def save_response_as_markdown(question, response): | |
timestamp = datetime.now().strftime("%Y%m%d%H%M") | |
filename = f"{timestamp}_{question[:50]}.md" # Truncate question to 50 chars for filename | |
with open(filename, "w", encoding="utf-8") as f: | |
f.write(response) | |
return filename | |
def list_markdown_files(): | |
files = glob.glob("*.md") | |
files.sort(key=os.path.getmtime, reverse=True) | |
return [f for f in files if f != "README.md"] | |
def delete_file(filename): | |
if filename != "README.md": | |
os.remove(filename) | |
return f"Deleted {filename}" | |
return "Cannot delete README.md" | |
def display_markdown_contents(): | |
files = list_markdown_files() | |
output = "" | |
for file in files: | |
with open(file, "r", encoding="utf-8") as f: | |
content = f.read() | |
output += f"## {file}\n\n```markdown\n{content}\n```\n\n" | |
return output | |
# π¨ Building the UI - it's like LEGO, but for brains! π§ ποΈ | |
with gr.Blocks(theme = gr.themes.Soft()) as demo: | |
header = gr.Markdown(header_text) | |
with gr.Group(): | |
msg = gr.Textbox(label = 'Search', placeholder = 'What is Generative AI in Healthcare?') | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(equal_height = True): | |
llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model') | |
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context") | |
database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source') | |
stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False) | |
output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder) | |
input = gr.Textbox(show_label = False, visible = False) | |
gr_md = gr.Markdown(mark_text + md_text_initial) | |
with gr.Tab("Saved Responses"): | |
refresh_button = gr.Button("π Refresh File List") | |
file_list = gr.Dropdown(choices=list_markdown_files(), label="Saved Responses") | |
delete_button = gr.Button("ποΈ Delete Selected File") | |
markdown_display = gr.Markdown() | |
# π Update the file list - keeping things fresh! πΏ | |
def update_file_list(): | |
return gr.Dropdown(choices=list_markdown_files()) | |
refresh_button.click(update_file_list, outputs=[file_list]) | |
delete_button.click(delete_file, inputs=[file_list], outputs=[markdown_display]).then(update_file_list, outputs=[file_list]) | |
file_list.change(lambda x: open(x, "r", encoding="utf-8").read() if x else "", inputs=[file_list], outputs=[markdown_display]) | |
# π The grand finale - where the magic happens! π©β¨ | |
def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'): | |
prompt_text_from_data = "" | |
database_to_use = database_choice | |
if database_choice == index_info: | |
rag_out = get_rag(message) | |
else: | |
arxiv_search_success = True | |
try: | |
rag_out = get_arxiv_live_search(message, arx_client, retrieve_results) | |
if len(rag_out) == 0: | |
arxiv_search_success = False | |
except: | |
arxiv_search_success = False | |
if not arxiv_search_success: | |
gr.Warning("π΄ Arxiv Search is taking a siesta, switching to semantic search ...") | |
rag_out = get_rag(message) | |
database_to_use = index_info | |
md_text_updated = mark_text | |
for i in range(retrieve_results): | |
rag_answer = rag_out[i] | |
if i < llm_results_use: | |
md_text_paper, prompt_text = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True) | |
prompt_text_from_data += f"{i+1}. {prompt_text}" | |
else: | |
md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use) | |
md_text_updated += md_text_paper | |
prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked) | |
return md_text_updated, prompt | |
# π§ Asking the LLM - it's like a really smart magic 8-ball! π±β¨ | |
def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False): | |
model_disabled_text = "LLM Model is taking a vacation. Try again later! ποΈ" | |
output = "" | |
if llm_model_picked == 'None': | |
if stream_outputs: | |
for out in model_disabled_text: | |
output += out | |
yield output | |
return output | |
else: | |
return model_disabled_text | |
client = InferenceClient(llm_model_picked) | |
try: | |
stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False) | |
except: | |
gr.Warning("π¦ LLM Inference hit a traffic jam! Take a breather and try again later.") | |
return "" | |
if stream_outputs: | |
for response in stream: | |
output += response | |
SaveResponseAndRead(response) | |
yield output | |
return output | |
else: | |
return stream | |
# π¬ Action! Process the query and save the response | |
def process_and_save(message, llm_results_use, database_choice, llm_model_picked): | |
md_text_updated, prompt = update_with_rag_md(message, llm_results_use, database_choice, llm_model_picked) | |
llm_response = ask_llm(prompt, llm_model_picked, stream_outputs=False) | |
full_response = f"Question: {message}\n\nResponse:\n{llm_response}\n\nReferences:\n{md_text_updated}" | |
filename = save_response_as_markdown(message, full_response) | |
return md_text_updated, prompt, llm_response, filename | |
# π¬ Lights, camera, action! Let's get this show on the road! π | |
msg.submit(process_and_save, [msg, llm_results, database_src, llm_model], [gr_md, input, output_text, file_list]).then(update_file_list, outputs=[file_list]) | |
# π Launch the app - let the knowledge party begin! ππ§ | |
demo.queue().launch() |