File size: 22,991 Bytes
58f0729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ef6739
58f0729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ef6739
58f0729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
#!/usr/bin/env python3
"""
HuggingFace Segment-Based Video Highlights Generator
Based on HuggingFace's SmolVLM2-HighlightGenerator approach
Optimized for HuggingFace Spaces with 256M model for resource efficiency
"""

import os
import sys
import argparse
import json
import subprocess
import tempfile
from pathlib import Path
from PIL import Image
from typing import List, Dict, Tuple, Optional
import logging

# Add src directory to path for imports
sys.path.append(str(Path(__file__).parent / "src"))

try:
    from src.smolvlm2_handler import SmolVLM2Handler
except ImportError:
    print("❌ SmolVLM2Handler not found. Make sure to install dependencies first.")
    sys.exit(1)

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class HuggingFaceVideoHighlightDetector:
    """
    HuggingFace Segment-Based Video Highlight Detection
    Uses fixed-length segments for consistent AI classification
    """
    
    def __init__(self, model_name: str = "HuggingFaceTB/SmolVLM2-256M-Video-Instruct"):
        """Initialize with SmolVLM2 model - 2.2B provides much better reasoning than 256M"""
        print(f"πŸ”₯ Loading {model_name} for HuggingFace Segment-Based Analysis...")
        self.vlm_handler = SmolVLM2Handler(model_name=model_name)
        print("βœ… SmolVLM2 loaded successfully!")
    
    def get_video_duration_seconds(self, video_path: str) -> float:
        """Get video duration using ffprobe"""
        cmd = [
            "ffprobe", "-v", "quiet", "-show_entries", 
            "format=duration", "-of", "csv=p=0", video_path
        ]
        try:
            result = subprocess.run(cmd, capture_output=True, text=True, check=True)
            return float(result.stdout.strip())
        except subprocess.CalledProcessError as e:
            logger.error(f"Failed to get video duration: {e}")
            return 0.0
    
    def analyze_video_content(self, video_path: str) -> str:
        """Get overall video description by analyzing multiple frames"""
        duration = self.get_video_duration_seconds(video_path)
        
        # Extract frames from different parts of the video
        frame_times = [duration * 0.1, duration * 0.3, duration * 0.5, duration * 0.7, duration * 0.9]
        descriptions = []
        
        for i, time_point in enumerate(frame_times):
            with tempfile.NamedTemporaryFile(suffix=f'_frame_{i}.jpg', delete=False) as temp_frame:
                cmd = [
                    "ffmpeg", "-v", "quiet", "-i", video_path,
                    "-ss", str(time_point), "-vframes", "1", "-y", temp_frame.name
                ]
                
                try:
                    subprocess.run(cmd, check=True, capture_output=True)
                    
                    # Analyze this frame
                    prompt = f"Describe what is happening in this video frame at {time_point:.1f}s. Focus on activities, actions, and interesting visual elements."
                    description = self.vlm_handler.generate_response(temp_frame.name, prompt)
                    descriptions.append(f"At {time_point:.1f}s: {description}")
                    
                except subprocess.CalledProcessError as e:
                    logger.error(f"Failed to extract frame at {time_point}s: {e}")
                    continue
                finally:
                    # Clean up temp file
                    if os.path.exists(temp_frame.name):
                        os.unlink(temp_frame.name)
        
        # Combine all descriptions
        if descriptions:
            return "Video content analysis:\n" + "\n".join(descriptions)
        else:
            return "Unable to analyze video content"
    
    def determine_highlights(self, video_description: str) -> Tuple[str, str]:
        """Generate simple, focused criteria based on actual video content"""
        
        # Instead of generating hallucinated criteria, use simple general criteria
        # that can be applied to any video segment
        
        criteria_set_1 = """Look for segments with:
- Significant movement or action
- Clear visual activity or events happening
- People interacting or doing activities
- Changes in scene or camera angle
- Dynamic or interesting visual content"""

        criteria_set_2 = """Look for segments with:
- Interesting facial expressions or gestures
- Multiple people or subjects in frame
- Good lighting and clear visibility
- Engaging activities or behaviors
- Visually appealing or well-composed shots"""
        
        return criteria_set_1, criteria_set_2
    
    def process_segment(self, video_path: str, start_time: float, end_time: float, 
                       highlight_criteria: str, segment_num: int, total_segments: int) -> str:
        """Process a single 5-second segment and determine if it matches criteria"""
        
        # Extract 3 frames from the segment for analysis
        segment_duration = end_time - start_time
        frame_times = [
            start_time + segment_duration * 0.2,  # 20% into segment
            start_time + segment_duration * 0.5,  # Middle of segment  
            start_time + segment_duration * 0.8   # 80% into segment
        ]
        
        temp_frames = []
        try:
            # Extract frames
            for i, frame_time in enumerate(frame_times):
                temp_frame = tempfile.NamedTemporaryFile(suffix=f'_frame_{i}.jpg', delete=False)
                temp_frames.append(temp_frame.name)
                temp_frame.close()
                
                cmd = [
                    "ffmpeg", "-v", "quiet", "-i", video_path,
                    "-ss", str(frame_time), "-vframes", "1", "-y", temp_frame.name
                ]
                subprocess.run(cmd, check=True, capture_output=True)
            
            # Create prompt for segment classification - direct evaluation
            prompt = f"""Look at this frame from a {segment_duration:.1f}-second video segment.

Rate this video segment for highlight potential on a scale of 1-10, where:
- 1-3: Boring, static, nothing interesting happening
- 4-6: Moderately interesting, some activity or visual interest
- 7-10: Very interesting, dynamic action, engaging content worth highlighting

Consider:
- Amount of movement and activity
- Visual interest and composition
- People interactions or engaging behavior
- Overall entertainment value

Give ONLY a number from 1-10, nothing else."""

            # Get AI response using first frame (SmolVLM2Handler expects single image)
            response = self.vlm_handler.generate_response(temp_frames[0], prompt)
            
            # Extract numeric score from response
            try:
                # Try to extract a number from the response
                import re
                numbers = re.findall(r'\b(\d+)\b', response)
                if numbers:
                    score = int(numbers[0])
                    if 1 <= score <= 10:
                        print(f"   πŸ€– Score: {score}/10")
                        return str(score)
                
                print(f"   πŸ€– Response: {response} (couldn't extract valid score)")
                return "1"  # Default to low score if no valid number
            except:
                print(f"   πŸ€– Response: {response} (error parsing)")
                return "1"
            
        except subprocess.CalledProcessError as e:
            logger.error(f"Failed to process segment {segment_num}: {e}")
            return "no"
        finally:
            # Clean up temp frames
            for temp_frame in temp_frames:
                if os.path.exists(temp_frame):
                    os.unlink(temp_frame)
    
    def create_video_segment(self, video_path: str, start_sec: float, end_sec: float, output_path: str) -> bool:
        """Create a video segment using ffmpeg."""
        cmd = [
            "ffmpeg",
            "-v", "quiet",  # Suppress FFmpeg output
            "-y",
            "-i", video_path,
            "-ss", str(start_sec),
            "-to", str(end_sec),
            "-c", "copy",  # Copy without re-encoding for speed
            output_path
        ]
        
        try:
            subprocess.run(cmd, check=True, capture_output=True)
            return True
        except subprocess.CalledProcessError as e:
            logger.error(f"Failed to create segment: {e}")
            return False
    
    def concatenate_scenes(self, video_path: str, scene_times: List[Tuple[float, float]], 
                          output_path: str, with_effects: bool = True) -> bool:
        """Concatenate selected scenes with optional effects"""
        if with_effects:
            return self._concatenate_with_effects(video_path, scene_times, output_path)
        else:
            return self._concatenate_basic(video_path, scene_times, output_path)
    
    def _concatenate_basic(self, video_path: str, scene_times: List[Tuple[float, float]], output_path: str) -> bool:
        """Basic concatenation without effects"""
        if not scene_times:
            logger.error("No scenes to concatenate")
            return False
        
        # Create temporary files for each segment
        temp_files = []
        temp_list_file = tempfile.NamedTemporaryFile(mode='w', suffix='.txt', delete=False)
        
        try:
            for i, (start_sec, end_sec) in enumerate(scene_times):
                temp_file = tempfile.NamedTemporaryFile(suffix=f'_segment_{i}.mp4', delete=False)
                temp_files.append(temp_file.name)
                temp_file.close()
                
                # Create segment
                if not self.create_video_segment(video_path, start_sec, end_sec, temp_file.name):
                    return False
                
                # Add to concat list
                temp_list_file.write(f"file '{temp_file.name}'\n")
            
            temp_list_file.close()
            
            # Concatenate all segments
            cmd = [
                "ffmpeg", "-v", "quiet", "-y",
                "-f", "concat", "-safe", "0",
                "-i", temp_list_file.name,
                "-c", "copy",
                output_path
            ]
            
            subprocess.run(cmd, check=True, capture_output=True)
            return True
            
        except subprocess.CalledProcessError as e:
            logger.error(f"Failed to concatenate scenes: {e}")
            return False
        finally:
            # Cleanup
            for temp_file in temp_files:
                if os.path.exists(temp_file):
                    os.unlink(temp_file)
            if os.path.exists(temp_list_file.name):
                os.unlink(temp_list_file.name)
    
    def _concatenate_with_effects(self, video_path: str, scene_times: List[Tuple[float, float]], output_path: str) -> bool:
        """Simple concatenation with basic fade transitions."""
        filter_complex_parts = []
        concat_inputs = []
        
        # Simple fade duration
        fade_duration = 0.5
        
        for i, (start_sec, end_sec) in enumerate(scene_times):
            print(f"   ✨ Segment {i+1}: {start_sec:.1f}s - {end_sec:.1f}s ({end_sec-start_sec:.1f}s) with FADE effect")
            
            # Simple video effects: just trim and basic fade
            video_effects = (
                f"trim=start={start_sec}:end={end_sec},"
                f"setpts=PTS-STARTPTS,"
                f"fade=t=in:st=0:d={fade_duration},"
                f"fade=t=out:st={max(0, end_sec-start_sec-fade_duration)}:d={fade_duration}"
            )
            
            filter_complex_parts.append(f"[0:v]{video_effects}[v{i}];")
            
            # Simple audio effects: just trim and fade
            audio_effects = (
                f"atrim=start={start_sec}:end={end_sec},"
                f"asetpts=PTS-STARTPTS,"
                f"afade=t=in:st=0:d={fade_duration},"
                f"afade=t=out:st={max(0, end_sec-start_sec-fade_duration)}:d={fade_duration}"
            )
            
            filter_complex_parts.append(f"[0:a]{audio_effects}[a{i}];")
            concat_inputs.append(f"[v{i}][a{i}]")
        
        # Simple concatenate all segments
        concat_filter = f"{''.join(concat_inputs)}concat=n={len(scene_times)}:v=1:a=1[outv][outa];"
        
        filter_complex = "".join(filter_complex_parts) + concat_filter

        cmd = [
            "ffmpeg",
            "-v", "quiet",
            "-y",
            "-i", video_path,
            "-filter_complex", filter_complex,
            "-map", "[outv]",
            "-map", "[outa]",
            "-c:v", "libx264",
            "-preset", "medium",
            "-crf", "23",
            "-c:a", "aac",
            "-b:a", "128k",
            "-pix_fmt", "yuv420p",
            output_path
        ]

        try:
            subprocess.run(cmd, check=True, capture_output=True)
            return True
        except subprocess.CalledProcessError as e:
            logger.error(f"Failed to concatenate scenes with effects: {e}")
            return False
    
    def _single_segment_with_effects(self, video_path: str, scene_time: Tuple[float, float], output_path: str) -> bool:
        """Apply simple effects to a single segment."""
        start_sec, end_sec = scene_time
        print(f"   ✨ Single segment: {start_sec:.1f}s - {end_sec:.1f}s ({end_sec-start_sec:.1f}s) with fade effect")
        
        # Simple video effects: just trim and fade
        video_effects = (
            f"trim=start={start_sec}:end={end_sec},"
            f"setpts=PTS-STARTPTS,"
            f"fade=t=in:st=0:d=0.5,"
            f"fade=t=out:st={max(0, end_sec-start_sec-0.5)}:d=0.5"
        )
        
        # Simple audio effects with fade
        audio_effects = (
            f"atrim=start={start_sec}:end={end_sec},"
            f"asetpts=PTS-STARTPTS,"
            f"afade=t=in:st=0:d=0.5,"
            f"afade=t=out:st={max(0, end_sec-start_sec-0.5)}:d=0.5"
        )
        
        cmd = [
            "ffmpeg",
            "-v", "quiet",
            "-y",
            "-i", video_path,
            "-vf", video_effects,
            "-af", audio_effects,
            "-c:v", "libx264",
            "-preset", "medium",
            "-crf", "23",
            "-c:a", "aac",
            "-b:a", "128k",
            "-pix_fmt", "yuv420p",
            output_path
        ]

        try:
            subprocess.run(cmd, check=True, capture_output=True)
            return True
        except subprocess.CalledProcessError as e:
            logger.error(f"Failed to create single segment with effects: {e}")
            return False
    
    def process_video(self, video_path: str, output_path: str, segment_length: float = 5.0, with_effects: bool = True) -> Dict:
        """Process video using HuggingFace's segment-based approach."""
        print("πŸš€ Starting HuggingFace Segment-Based Video Highlight Detection")
        print(f"πŸ“ Input: {video_path}")
        print(f"πŸ“ Output: {output_path}")
        print(f"⏱️ Segment Length: {segment_length}s")
        print()
        
        # Get video duration
        duration = self.get_video_duration_seconds(video_path)
        if duration <= 0:
            return {"error": "Could not determine video duration"}
        
        print(f"πŸ“Ή Video duration: {duration:.1f}s ({duration/60:.1f} minutes)")
        
        # Step 1: Analyze overall video content
        print("🎬 Step 1: Analyzing overall video content...")
        video_description = self.analyze_video_content(video_path)
        print(f"πŸ“ Video Description:")
        print(f"   {video_description}")
        print()
        
        # Step 2: Direct scoring approach (no predefined criteria)
        print("🎯 Step 2: Using direct scoring approach - each segment rated 1-10 for highlight potential")
        print()
        
        # Step 3: Process segments with scoring
        num_segments = int(duration / segment_length) + (1 if duration % segment_length > 0 else 0)
        print(f"πŸ” Step 3: Processing {num_segments} segments of {segment_length}s each...")
        print("   Each segment will be scored 1-10 for highlight potential")
        print()
        
        segment_scores = []
        
        for i in range(num_segments):
            start_time = i * segment_length
            end_time = min(start_time + segment_length, duration)
            
            progress = int((i / num_segments) * 100) if num_segments > 0 else 0
            print(f"πŸ“Š Processing segment {i+1}/{num_segments} ({progress}%)")
            print(f"   ⏰ Time: {start_time:.0f}s - {end_time:.1f}s")
            
            # Get score for this segment
            score_str = self.process_segment(video_path, start_time, end_time, "", i+1, num_segments)
            
            try:
                score = int(score_str)
                segment_scores.append({
                    'start': start_time,
                    'end': end_time,
                    'score': score
                })
                
                if score >= 7:
                    print(f"   βœ… HIGH SCORE ({score}/10) - Excellent highlight material")
                elif score >= 5:
                    print(f"   🟑 MEDIUM SCORE ({score}/10) - Moderate interest")
                else:
                    print(f"   ❌ LOW SCORE ({score}/10) - Not highlight worthy")
                    
            except ValueError:
                print(f"   ❌ Invalid score: {score_str}")
                segment_scores.append({
                    'start': start_time,
                    'end': end_time,
                    'score': 1
                })
            print()
        
        # Sort segments by score and select top performers
        segment_scores.sort(key=lambda x: x['score'], reverse=True)
        
        # Select segments with score >= 6 (good highlight material)
        high_score_segments = [s for s in segment_scores if s['score'] >= 6]
        
        # If too few high-scoring segments, lower the threshold
        if len(high_score_segments) < 3:
            high_score_segments = [s for s in segment_scores if s['score'] >= 5]
        
        # If still too few, take top 20% of segments
        if len(high_score_segments) < 3:
            top_count = max(3, len(segment_scores) // 5)  # At least 3, or 20% of total
            high_score_segments = segment_scores[:top_count]
        
        selected_segments = [(s['start'], s['end']) for s in high_score_segments]
        
        print("πŸ“Š Results Summary:")
        print(f"   πŸ“ˆ Average score: {sum(s['score'] for s in segment_scores) / len(segment_scores):.1f}/10")
        print(f"   πŸ† High-scoring segments (β‰₯6): {len([s for s in segment_scores if s['score'] >= 6])}")
        print(f"   βœ… Selected for highlights: {len(selected_segments)} segments ({len(selected_segments)/num_segments*100:.1f}% of video)")
        print()
        
        if not selected_segments:
            return {
                "error": "No segments had sufficient scores for highlights",
                "video_description": video_description,
                "segment_scores": segment_scores,
                "total_segments": num_segments
            }
        
        # Step 4: Create highlights video
        print(f"🎬 Step 4: Concatenating {len(selected_segments)} selected segments with {'beautiful effects & transitions' if with_effects else 'basic concatenation'}...")
        
        success = self.concatenate_scenes(video_path, selected_segments, output_path, with_effects)
        
        if success:
            print("βœ… Highlights video created successfully!")
            total_duration = sum(end - start for start, end in selected_segments)
            print(f"πŸŽ‰ SUCCESS! Created highlights with {len(selected_segments)} segments")
            print(f"   πŸ“Ή Total highlight duration: {total_duration:.1f}s")
            print(f"   πŸ“Š Percentage of original video: {total_duration/duration*100:.1f}%")
        else:
            print("❌ Failed to create highlights video")
            return {"error": "Failed to create highlights video"}
        
        # Return analysis results
        return {
            "success": True,
            "video_description": video_description,
            "scoring_approach": "Direct segment scoring (1-10 scale)",
            "total_segments": num_segments,
            "selected_segments": len(selected_segments),
            "selected_times": selected_segments,
            "segment_scores": segment_scores,
            "average_score": sum(s['score'] for s in segment_scores) / len(segment_scores),
            "total_duration": total_duration,
            "compression_ratio": total_duration/duration,
            "output_path": output_path
        }


def main():
    parser = argparse.ArgumentParser(description='HuggingFace Segment-Based Video Highlights')
    parser.add_argument('video_path', help='Path to input video file')
    parser.add_argument('--output', required=True, help='Path to output highlights video')
    parser.add_argument('--save-analysis', action='store_true', help='Save analysis results to JSON')
    parser.add_argument('--segment-length', type=float, default=5.0, help='Length of each segment in seconds (default: 5.0)')
    parser.add_argument('--model', default='HuggingFaceTB/SmolVLM2-256M-Video-Instruct', help='SmolVLM2 model to use')
    parser.add_argument('--effects', action='store_true', default=True, help='Enable beautiful effects & transitions (default: True)')
    parser.add_argument('--no-effects', action='store_true', help='Disable effects - basic concatenation only')
    
    args = parser.parse_args()
    
    # Handle effects flag
    with_effects = args.effects and not args.no_effects
    
    print("πŸš€ HuggingFace Approach SmolVLM2 Video Highlights")
    print("   Based on: https://huggingface.co/spaces/HuggingFaceTB/SmolVLM2-HighlightGenerator")
    print(f"   Model: {args.model}")
    print(f"   Effects: {'✨ Beautiful effects & transitions enabled' if with_effects else 'πŸ”§ Basic concatenation only'}")
    print()
    
    # Initialize detector
    detector = HuggingFaceVideoHighlightDetector(model_name=args.model)
    
    # Process video
    results = detector.process_video(
        video_path=args.video_path,
        output_path=args.output,
        segment_length=args.segment_length,
        with_effects=with_effects
    )
    
    # Save analysis if requested
    if args.save_analysis and 'error' not in results:
        analysis_path = args.output.replace('.mp4', '_hf_analysis.json')
        with open(analysis_path, 'w') as f:
            json.dump(results, f, indent=2)
        print(f"πŸ“Š Analysis saved: {analysis_path}")
    
    if 'error' in results:
        print(f"❌ {results['error']}")
        sys.exit(1)


if __name__ == "__main__":
    main()