Spaces:
Sleeping
Sleeping
File size: 9,455 Bytes
8cd371e a7aaec4 fb363a1 a7aaec4 fb363a1 a7aaec4 c1fe264 a7aaec4 c1fe264 fb363a1 2529e2a fb363a1 a7aaec4 c1fe264 a7aaec4 fb363a1 c1fe264 fb363a1 a7aaec4 fb363a1 c1fe264 2529e2a fb363a1 a7aaec4 fb363a1 2529e2a fb363a1 a7aaec4 2529e2a a7aaec4 fb363a1 a7aaec4 fb363a1 2529e2a fb363a1 a7aaec4 2529e2a a7aaec4 fb363a1 a7aaec4 fb363a1 a7aaec4 fb363a1 a7aaec4 fb363a1 a7aaec4 c1fe264 fb363a1 2529e2a fb363a1 a7aaec4 c1fe264 a7aaec4 fb363a1 c1fe264 fb363a1 a7aaec4 fb363a1 c1fe264 2529e2a fb363a1 a7aaec4 fb363a1 2529e2a fb363a1 a7aaec4 2529e2a a7aaec4 fb363a1 a7aaec4 fb363a1 2529e2a c1fe264 2529e2a fb363a1 a7aaec4 2529e2a a7aaec4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
from sentence_transformers import SentenceTransformer
from langchain.text_splitter import RecursiveCharacterTextSplitter
from pypdf import PdfReader
import requests
import json
import os
import time
def extract_text_from_pdf(pdf_path):
reader = PdfReader(pdf_path)
text = ""
for page in reader.pages:
text += page.extract_text() + "\n"
return text.strip()
def chunk_text(text, chunk_size=500, chunk_overlap=100):
splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap, # Overlap to preserve context
separators=["\n\n", "\n", " ", ""], # Prioritize logical breaks
)
return splitter.split_text(text)
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
def embedding_function(texts):
return embedding_model.encode(texts, convert_to_numpy=True).tolist()
def generate_hypothetical_answer(query):
import requests
import json
import os
import time
# Hugging Face API endpoint with vLLM
api_url = "https://router.huggingface.co/hf-inference/models/meta-llama/Llama-2-7b-chat-hf/v1/chat/completions"
# Get API token from environment variable
api_token = os.getenv("HUGGINGFACE_API_TOKEN")
if not api_token:
print("Error: HUGGINGFACE_API_TOKEN environment variable not set")
return "Error: HUGGINGFACE_API_TOKEN environment variable not set"
# Headers for the API request
headers = {
"Authorization": f"Bearer {api_token}",
"Content-Type": "application/json"
}
# Create a prompt for generating a hypothetical answer
prompt = f"""
Given the following query, generate a hypothetical answer that might be found in a document:
Query: {query}
Hypothetical answer:
"""
# Prepare the request payload for vLLM
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": 256,
"temperature": 0.7,
"top_p": 0.95,
"do_sample": True,
"use_vllm": True # Enable vLLM for faster inference
}
}
try:
# Make the API request to Hugging Face
print("Sending request to Hugging Face API with vLLM for hypothetical answer...")
print(f"API URL: {api_url}")
print(f"Headers: {headers}")
print(f"Payload: {json.dumps(payload, indent=2)}")
start_time = time.time()
# Set a longer timeout (5 minutes)
response = requests.post(api_url, headers=headers, json=payload, timeout=300)
end_time = time.time()
print(f"Received hypothetical answer from Hugging Face API in {end_time - start_time:.2f} seconds")
print(f"Response status code: {response.status_code}")
print(f"Response headers: {response.headers}")
# Try to print the response content for debugging
try:
print(f"Response content: {response.text[:1000]}...") # Print first 1000 chars
except:
print("Could not print response content")
response.raise_for_status() # Raise an exception for HTTP errors
# Parse the response
result = response.json()
print(f"Parsed response: {json.dumps(result, indent=2)[:1000]}...") # Print first 1000 chars
# Extract the generated text
if isinstance(result, list) and len(result) > 0:
generated_text = result[0].get("generated_text", "")
else:
generated_text = result.get("generated_text", "")
return generated_text.strip()
except requests.exceptions.Timeout:
print("Request to Hugging Face API timed out after 5 minutes")
return "The request timed out. The model is taking too long to respond. Please try again with a simpler query."
except requests.exceptions.ConnectionError:
print("Could not connect to Hugging Face API")
return "Could not connect to the Hugging Face API. Please check your internet connection."
except requests.exceptions.HTTPError as e:
print(f"HTTP error occurred: {e}")
print(f"Response status code: {e.response.status_code}")
print(f"Response headers: {e.response.headers}")
try:
print(f"Response content: {e.response.text}")
except:
print("Could not print response content")
if e.response.status_code == 401:
return "Authentication error. Please check your Hugging Face API token."
elif e.response.status_code == 429:
return "Rate limit exceeded. Please try again later."
return f"HTTP error occurred: {e}"
except Exception as e:
print(f"Error generating hypothetical answer: {e}")
import traceback
print(f"Traceback: {traceback.format_exc()}")
return "Failed to generate a hypothetical answer."
def query_llm_with_context(query, context, top_n=3):
import requests
import json
import os
import time
# Unpack the context tuple
documents, similarity_scores = context
# Use only the top N documents
top_docs = documents[:top_n]
# Create a context string by joining the top documents
context_text = "\n\n===Document Boundary===\n\n".join(top_docs)
# Create a prompt with the context and query
prompt = f"""
Context information is below.
---------------------
{context_text}
---------------------
Given the context information and not prior knowledge, answer the following query:
Query: {query}
"""
# Hugging Face API endpoint with vLLM
api_url = "https://router.huggingface.co/hf-inference/models/meta-llama/Llama-2-7b-chat-hf/v1/chat/completions"
# Get API token from environment variable
api_token = os.getenv("HUGGINGFACE_API_TOKEN")
if not api_token:
print("Error: HUGGINGFACE_API_TOKEN environment variable not set")
return "Error: HUGGINGFACE_API_TOKEN environment variable not set"
# Headers for the API request
headers = {
"Authorization": f"Bearer {api_token}",
"Content-Type": "application/json"
}
# Prepare the request payload for vLLM
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": 512,
"temperature": 0.7,
"top_p": 0.95,
"do_sample": True,
"use_vllm": True # Enable vLLM for faster inference
}
}
try:
# Make the API request to Hugging Face
print("Sending request to Hugging Face API with vLLM...")
print(f"API URL: {api_url}")
print(f"Headers: {headers}")
print(f"Payload: {json.dumps(payload, indent=2)}")
start_time = time.time()
# Set a longer timeout (5 minutes)
response = requests.post(api_url, headers=headers, json=payload, timeout=300)
end_time = time.time()
print(f"Received response from Hugging Face API in {end_time - start_time:.2f} seconds")
print(f"Response status code: {response.status_code}")
print(f"Response headers: {response.headers}")
# Try to print the response content for debugging
try:
print(f"Response content: {response.text[:1000]}...") # Print first 1000 chars
except:
print("Could not print response content")
response.raise_for_status() # Raise an exception for HTTP errors
# Parse the response
result = response.json()
print(f"Parsed response: {json.dumps(result, indent=2)[:1000]}...") # Print first 1000 chars
# Extract the generated text
if isinstance(result, list) and len(result) > 0:
generated_text = result[0].get("generated_text", "")
else:
generated_text = result.get("generated_text", "")
return generated_text.strip()
except requests.exceptions.Timeout:
print("Request to Hugging Face API timed out after 5 minutes")
return "The request timed out. The model is taking too long to respond. Please try again with a simpler query or fewer context documents."
except requests.exceptions.ConnectionError:
print("Could not connect to Hugging Face API")
return "Could not connect to the Hugging Face API. Please check your internet connection."
except requests.exceptions.HTTPError as e:
print(f"HTTP error occurred: {e}")
print(f"Response status code: {e.response.status_code}")
print(f"Response headers: {e.response.headers}")
try:
print(f"Response content: {e.response.text}")
except:
print("Could not print response content")
if e.response.status_code == 401:
return "Authentication error. Please check your Hugging Face API token."
elif e.response.status_code == 429:
return "Rate limit exceeded. Please try again later."
return f"HTTP error occurred: {e}"
except Exception as e:
print(f"Error querying LLM with context: {e}")
import traceback
print(f"Traceback: {traceback.format_exc()}")
return "Failed to generate an answer with the provided context."
|