Spaces:
Sleeping
Sleeping
File size: 14,110 Bytes
dca1254 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import streamlit as st
from streamlit_chat import message
from langchain.chains import ConversationalRetrievalChain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.memory import ConversationBufferMemory
from langchain_core.prompts import PromptTemplate
from langchain_community.vectorstores import FAISS
import pdfplumber
import docx2txt
from langchain_community.embeddings import OllamaEmbeddings
from langchain_groq import ChatGroq
from dotenv import load_dotenv
from easygoogletranslate import EasyGoogleTranslate
import os
import csv
import re
from io import StringIO
import speech_recognition as sr
import pygame
from threading import Thread
from gtts import gTTS
import gc
import torch
os.environ['CUDA_VISIBLE_DEVICES'] = ''
torch.set_num_threads(1)
load_dotenv()
groq_api_key = os.getenv('GROQ_API_KEY')
MAX_DOCUMENTS = 5
def initialize_session_state():
if 'history' not in st.session_state:
st.session_state['history'] = []
if 'generated' not in st.session_state:
st.session_state['generated'] = ["Hello! Ask me anything about π€"]
if 'past' not in st.session_state:
st.session_state['past'] = ["Hey! π"]
if 'translated' not in st.session_state:
st.session_state['translated'] = ["Hello! Ask me anything about π€"]
if 'translation_requested' not in st.session_state:
st.session_state['translation_requested'] = [False] * len(st.session_state['generated'])
if 'chain' not in st.session_state:
st.session_state['chain'] = None
if 'vector_store' not in st.session_state:
st.session_state['vector_store'] = None
def translate_text(text, target_language='en'):
translator = EasyGoogleTranslate(target_language=target_language)
try:
return translator.translate(text)
except Exception as e:
st.error(f"Translation error: {e}")
return text
def clean_text_for_speech(text):
# Replacing symbols and formatting text
text = re.sub(r'[*_~#|β’ββ ββͺ]', '', text)
text = re.sub(r'\n', ' ', text)
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'([.!?])\s*', r'\1 ', text)
text = re.sub(r'[:;]', ' ', text)
text = re.sub(r'[-]', ' ', text)
text = re.sub(r'[(){}\[\]]', '', text)
# Handle numbers and decimals
text = re.sub(r'(\d+)\.(\d+)', r'\1 point \2', text)
# Make sure to handle numbers correctly
replacements = {
'&': 'and', '%': 'percent', '$': 'dollars', 'β¬': 'euros', 'Β£': 'pounds',
'@': 'at', '#': 'hashtag', 'e.g.': 'for example', 'i.e.': 'that is',
'etc.': 'et cetera', 'vs.': 'versus', 'fig.': 'figure', 'approx.': 'approximately',
}
for key, value in replacements.items():
text = text.replace(key, value)
return text.strip()
def text_to_speech(text, language='en', speed=1.0):
cleaned_text = clean_text_for_speech(text)
tts = gTTS(text=cleaned_text, lang=language, slow=(speed < 1.0))
tts.save("output.mp3")
with open("output.mp3", "rb") as audio_file:
audio_bytes = audio_file.read()
return audio_bytes
def conversation_chat(query, chain, history):
template = """
You are an expert analyst with deep knowledge across various fields. Your task is to provide an in-depth, comprehensive analysis of the uploaded documents. Approach each question with critical thinking and attention to detail.
You are only allowed to answer questions directly related to the content of the uploaded documents.
If a question is outside the scope of the documents, respond with: 'I'm sorry, I can only answer questions about the uploaded documents.'
Guidelines for Analysis:
1. Document Overview:
- Identify the type of document(s) (research paper, report, data set, etc.)
- Summarize the main topic and purpose of each document
2. Content Analysis:
- For research papers: Analyze the abstract, introduction, methodology, results, discussion, and conclusion
- For reports: Examine executive summary, key findings, and recommendations
- For data sets: Describe the structure, variables, and any apparent trends
3. Key Points and Findings:
- Highlight the most significant information and insights from each document
- Identify any unique or surprising elements in the content
4. Contextual Analysis:
- Place the information in a broader context within its field
- Discuss how this information relates to current trends or issues
5. Critical Evaluation:
- Assess the strengths and limitations of the presented information
- Identify any potential biases or gaps in the data or arguments
6. Implications and Applications:
- Discuss the potential impact of the findings or information
- Suggest possible applications or areas for further research
7. Comparative Analysis (if multiple documents):
- Compare and contrast information across different documents
- Identify any conflicting data or viewpoints
8. Data Interpretation:
- For numerical data: Provide clear explanations of statistics or trends
- For qualitative information: Offer interpretations of key quotes or concepts
9. Sourcing and Credibility:
- Comment on the credibility of the sources (if apparent)
- Note any references to other important works in the field
10. Comprehensive Response:
- Ensure all aspects of the question are addressed
- Provide a balanced view, considering multiple perspectives if applicable
Remember to maintain an objective, analytical tone. Your goal is to provide the most thorough and insightful analysis possible based on the available documents.
Previous Context: {previous_context}
Question: {query}
"""
prompt = PromptTemplate.from_template(template)
result = chain.invoke({"question": query, "chat_history": history}, prompt=prompt)
answer = result.get("answer", "I'm sorry, I couldn't generate an answer.")
history.append((query, answer))
return answer
def display_chat_history(chain):
st.write("Chat History:")
for i in range(len(st.session_state['past'])):
message(st.session_state['past'][i], is_user=True, key=f'{i}_user', avatar_style="avataaars", seed="Aneka")
message(st.session_state['generated'][i], key=f'{i}_bot', avatar_style="bottts", seed="Aneka")
col1, col2, col3 = st.columns([2, 1, 1])
with col1:
dest_language = st.selectbox('Select language for translation:',
options=['hi', 'kn'],
index=0,
key=f'{i}_lang_select')
with col2:
if st.button(f'Translate Message {i}', key=f'{i}_translate'):
translated_text = translate_text(st.session_state['generated'][i], target_language=dest_language)
st.session_state['translated'][i] = translated_text
st.session_state['translation_requested'][i] = True
st.experimental_rerun()
with col3:
if st.button(f'Play Message {i}', key=f'{i}_play'):
audio_bytes = text_to_speech(st.session_state['generated'][i])
st.audio(audio_bytes, format="audio/mp3")
if st.session_state['translation_requested'][i]:
message(st.session_state['translated'][i], key=f'{i}_bot_translated', avatar_style="bottts", seed="Aneka")
if st.button(f'Play Translated Message {i}', key=f'{i}_play_translated'):
audio_bytes = text_to_speech(st.session_state['translated'][i], dest_language)
st.audio(audio_bytes, format="audio/mp3")
with st.form(key='user_input_form'):
user_input = st.text_input("Ask questions about your uploaded documents:", key="user_input")
submit_button = st.form_submit_button(label='Send')
if submit_button and user_input:
output = conversation_chat(user_input, chain, st.session_state['history'])
st.session_state['past'].append(user_input)
st.session_state['generated'].append(output)
st.session_state['translated'].append(output)
st.session_state['translation_requested'].append(False)
st.rerun()
def process_file(file):
if file.type == "application/pdf":
return process_pdf(file)
elif file.type == "text/plain":
return file.getvalue().decode("utf-8")
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
return docx2txt.process(file)
elif file.type == "text/csv":
return process_csv(file)
else:
st.error(f"Unsupported file type: {file.type}")
return ""
def process_csv(file):
text = ""
try:
file_content = file.getvalue().decode('utf-8')
csvfile = StringIO(file_content)
reader = csv.reader(csvfile)
headers = next(reader, None)
if headers:
text += f"CSV Headers: {', '.join(headers)}\n\n"
for i, row in enumerate(reader, 1):
text += f"Row {i}: {' | '.join(row)}\n"
text += f"\nTotal rows: {i}\n"
except Exception as e:
st.error(f"Error reading CSV file: {e}")
return text
def process_pdf(file):
text = ""
with pdfplumber.open(file) as pdf:
for page_num, page in enumerate(pdf.pages, 1):
page_text = page.extract_text()
if page_text:
text += f"[Page {page_num}]\n{page_text}\n\n"
sections = re.findall(r'(?i)(abstract|introduction|methodology|results|discussion|conclusion).*?\n(.*?)(?=\n(?i)(abstract|introduction|methodology|results|discussion|conclusion)|$)', text, re.DOTALL)
structured_text = "\n\n".join([f"{section[0].capitalize()}:\n{section[1]}" for section in sections])
return structured_text if structured_text else text
def recognize_speech():
recognizer = sr.Recognizer()
with sr.Microphone() as source:
st.write("Listening... Please speak now.")
try:
st.info("Listening for up to 10 seconds...")
recognizer.adjust_for_ambient_noise(source, duration=1)
audio = recognizer.listen(source, timeout=10, phrase_time_limit=5)
st.success("Audio captured. Processing...")
except sr.WaitTimeoutError:
st.warning("No speech detected. Please try again.")
return ""
try:
text = recognizer.recognize_google(audio)
st.success(f"You said: {text}")
return text
except sr.UnknownValueError:
st.error("Sorry, I couldn't understand that.")
return ""
except sr.RequestError as e:
st.error(f"Could not request results; {e}")
return ""
def create_conversational_chain(vector_store):
llm = ChatGroq(groq_api_key=groq_api_key, model_name='llama3-70b-8192')
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
chain = ConversationalRetrievalChain.from_llm(
llm=llm,
chain_type='stuff',
retriever=vector_store.as_retriever(search_kwargs={"k": 5}),
memory=memory
)
return chain
def main():
initialize_session_state()
st.set_page_config(page_title="DOCS Chatbot & Translator", layout="wide")
st.title("Smart Document Tool π€")
st.sidebar.header("About App:")
st.sidebar.write("This app utilizes Streamlit")
uploaded_files = st.file_uploader("Upload your Docs", type=["pdf", "txt", "docx", "csv"], accept_multiple_files=True)
if uploaded_files:
all_text = ""
for uploaded_file in uploaded_files[:MAX_DOCUMENTS]:
try:
all_text += f"File: {uploaded_file.name}\n\n{process_file(uploaded_file)}\n\n"
except Exception as e:
st.error(f"Error processing file {uploaded_file.name}: {e}")
finally:
gc.collect()
if len(uploaded_files) > MAX_DOCUMENTS:
st.warning(f"Only the first {MAX_DOCUMENTS} documents were processed due to memory constraints.")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=4000,
chunk_overlap=300,
length_function=len,
separators=["\n\n", "\n", " ", ""]
)
text_chunks = text_splitter.split_text(all_text)
embeddings = OllamaEmbeddings(model="nomic-embed-text")
with st.spinner('Analyzing Document...'):
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
st.session_state['vector_store'] = vector_store
st.session_state['chain'] = create_conversational_chain(vector_store)
display_chat_history(st.session_state['chain'])
if st.button('Speak Now'):
recognized_text = recognize_speech()
if recognized_text:
st.session_state['past'].append(recognized_text)
output = conversation_chat(recognized_text, st.session_state['chain'], st.session_state['history'])
st.session_state['generated'].append(output)
st.session_state['translated'].append(output)
st.session_state['translation_requested'].append(False)
audio_bytes = text_to_speech(output)
st.audio(audio_bytes, format="audio/mp3")
st.rerun()
else:
st.warning("No speech input was processed. Please try speaking again.")
gc.collect()
st.sidebar. caption="Your AI Assistant"
if __name__ == "__main__":
main()
|