File size: 11,668 Bytes
8135b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import math
import os
import json
import sys
import time
import cv2 as cv
import numpy as np

from lib.panel import Panel
from lib.segment import Segment
from lib.debug import Debug


class NotAnImageException(Exception):
	pass


class Page:

	DEFAULT_MIN_PANEL_SIZE_RATIO = 1 / 10

	def get_infos(self):
		actual_gutters = self.actual_gutters()

		return {
			'filename': self.url if self.url else os.path.basename(self.filename),
			'size': self.img_size,
			'numbering': self.numbering,
			'gutters': [actual_gutters['x'], actual_gutters['y']],
			'license': self.license,
			'panels': list(map(lambda p: p.to_xywh(), self.panels)),
			'processing_time': self.processing_time
		}

	def __init__(
		self,
		filename,
		numbering = None,
		debug = False,
		url = None,
		min_panel_size_ratio = None,
		panel_expansion = True
	):
		self.filename = filename
		self.panels = []
		self.segments = []

		self.processing_time = None
		t1 = time.time_ns()

		self.img = cv.imread(filename)
		if not isinstance(self.img, np.ndarray) or self.img.size == 0:
			raise NotAnImageException(f"File {filename} is not an image")

		self.numbering = numbering or "ltr"
		if not (numbering in ['ltr', 'rtl']):
			raise Exception('Fatal error, unknown numbering: ' + str(numbering))

		self.small_panel_ratio = min_panel_size_ratio or Page.DEFAULT_MIN_PANEL_SIZE_RATIO
		self.panel_expansion = panel_expansion
		self.url = url

		self.img_size = list(self.img.shape[:2])
		self.img_size.reverse()  # get a [width,height] list

		Debug.contour_size = 3

		# get license for this file
		self.license = None
		if os.path.isfile(filename + '.license'):
			with open(filename + '.license', encoding = "utf8") as fh:
				try:
					self.license = json.load(fh)
				except json.decoder.JSONDecodeError:
					print(f"License file {filename+'.license'} is not a valid JSON file", file = sys.stderr)
					sys.exit(1)

		Debug.set_base_img(self.img)

		Debug.add_step('Initial state', self.get_infos())
		Debug.add_image('Input image')

		self.gray = cv.cvtColor(self.img, cv.COLOR_BGR2GRAY)
		Debug.add_image('Shades of gray', img = self.gray)
		Debug.show_time("Shades of gray")

		# https://docs.opencv.org/3.4/d2/d2c/tutorial_sobel_derivatives.html
		ddepth = cv.CV_16S
		grad_x = cv.Sobel(self.gray, ddepth, 1, 0, ksize = 3, scale = 1, delta = 0, borderType = cv.BORDER_DEFAULT)
		# Gradient-Y
		# grad_y = cv.Scharr(self.gray,ddepth,0,1)
		grad_y = cv.Sobel(self.gray, ddepth, 0, 1, ksize = 3, scale = 1, delta = 0, borderType = cv.BORDER_DEFAULT)

		abs_grad_x = cv.convertScaleAbs(grad_x)
		abs_grad_y = cv.convertScaleAbs(grad_y)

		self.sobel = cv.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0)
		Debug.add_image('Sobel filter applied', img = self.sobel)
		Debug.show_time("Sobel filter")

		self.get_contours()
		self.get_segments()
		self.get_initial_panels()
		self.group_small_panels()
		self.split_panels()
		self.exclude_small_panels()
		self.merge_panels()
		self.deoverlap_panels()
		self.exclude_small_panels()

		if self.panel_expansion:
			self.panels.sort()  # TODO: move this below before panels sort-fix, when panels expansion is smarter
			self.expand_panels()

		if len(self.panels) == 0:
			self.panels.append(Panel(page = self, xywh = [0, 0, self.img_size[0], self.img_size[1]]))

		self.group_big_panels()

		self.fix_panels_numbering()

		self.processing_time = int((time.time_ns() - t1) / 10**7) / 100

	def get_contours(self):
		# Black background: values above 100 will be black, the rest white
		_, thresh = cv.threshold(self.sobel, 100, 255, cv.THRESH_BINARY)
		Debug.show_time("Image threshhold")

		self.contours, _ = cv.findContours(thresh, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)[-2:]

		Debug.add_image("Thresholded image", img = thresh)
		Debug.show_time("Get contours")

	def get_segments(self):
		self.segments = None

		lsd = cv.createLineSegmentDetector(0)
		dlines = lsd.detect(self.gray)

		Debug.show_time("Detected segments")

		min_dist = min(self.img_size) * self.small_panel_ratio

		while self.segments is None or len(self.segments) > 500:
			self.segments = []

			if dlines is None or dlines[0] is None:
				break

			for dline in dlines[0]:
				x0 = int(round(dline[0][0]))
				y0 = int(round(dline[0][1]))
				x1 = int(round(dline[0][2]))
				y1 = int(round(dline[0][3]))

				a = x0 - x1
				b = y0 - y1
				dist = math.sqrt(a**2 + b**2)
				if dist >= min_dist:
					self.segments.append(Segment([x0, y0], [x1, y1]))

			min_dist *= 1.1

		self.segments = Segment.union_all(self.segments)

		Debug.draw_segments(self.segments, Debug.colours['green'])
		Debug.add_image("Segment Detector")
		Debug.show_time("Compiled segments")

	# Get (square) panels out of initial contours
	def get_initial_panels(self):
		self.panels = []
		for contour in self.contours:
			arclength = cv.arcLength(contour, True)
			epsilon = 0.001 * arclength
			approx = cv.approxPolyDP(contour, epsilon, True)

			panel = Panel(page = self, polygon = approx)
			if panel.is_very_small():
				continue

			Debug.draw_contours([approx], Debug.colours['red'])

			self.panels.append(panel)

		Debug.add_image('Initial contours')
		Debug.add_step('Panels from initial contours', self.get_infos())

	# Group small panels that are close together, into bigger ones
	def group_small_panels(self):
		small_panels = list(filter(lambda p: p.is_small(), self.panels))
		groups = {}
		group_id = 0

		for i, p1 in enumerate(small_panels):
			for p2 in small_panels[i + 1:]:
				if p1 == p2:
					continue

				if not p1.is_close(p2):
					continue

				if p1 not in groups and p2 not in groups:
					group_id += 1
					groups[p1] = group_id
					groups[p2] = group_id
				elif p1 in groups and p2 not in groups:
					groups[p2] = groups[p1]
				elif p2 in groups and p1 not in groups:
					groups[p1] = groups[p2]
				elif groups[p1] != groups[p2]:
					# group group1 and group2 together
					for p, id in groups.items():
						if id == groups[p2]:
							groups[p] = groups[p1]

		grouped = {}
		for k, v in groups.items():
			grouped[v] = grouped.get(v, []) + [k]

		for small_panels in grouped.values():
			big_hull = cv.convexHull(np.concatenate(list(map(lambda p: p.polygon, small_panels))))
			big_panel = Panel(page = self, polygon = big_hull, splittable = False)

			self.panels.append(big_panel)
			for p in small_panels:
				self.panels.remove(p)

			Debug.draw_contours(list(map(lambda p: p.polygon, small_panels)), Debug.colours['lightblue'])
			Debug.draw_contours([big_panel.polygon], Debug.colours['red'])

		if group_id > 0:
			Debug.add_image('Group small panels')
		Debug.add_step('Group small panels', self.get_infos())

	# See if panels can be cut into several (two non-consecutive points are close)
	def split_panels(self):
		did_split = True
		while did_split:
			did_split = False
			for p in sorted(self.panels, key = lambda p: p.area(), reverse = True):
				split = p.split()
				if split is not None:
					did_split = True
					self.panels.remove(p)
					self.panels += split.subpanels

					Debug.draw_contours(list(map(lambda n: n.polygon, split.subpanels)), Debug.colours['blue'])
					Debug.draw_line(split.segment.a, split.segment.b, Debug.colours['red'])
					break

			if did_split:
				Debug.add_image(
					'Split contours (blue contours, red split-segment, gray polygon dots, purple nearby dots)'
				)

		Debug.add_step(f"Panels from split contours ({len(self.segments)} segments)", self.get_infos())

	def exclude_small_panels(self):
		self.panels = list(filter(lambda p: not p.is_small(), self.panels))

		Debug.add_step('Exclude small panels', self.get_infos())

	# Splitting polygons may result in panels slightly overlapping, de-overlap them
	def deoverlap_panels(self):
		for p1 in self.panels:
			for p2 in self.panels:
				if p1 == p2:
					continue

				opanel = p1.overlap_panel(p2)
				if not opanel:
					continue

				if opanel.w() < opanel.h() and p1.r == opanel.r:
					p1.r = opanel.x
					p2.x = opanel.r
					continue

				if opanel.w() > opanel.h() and p1.b == opanel.b:
					p1.b = opanel.y
					p2.y = opanel.b
					continue

		Debug.add_step('Deoverlap panels', self.get_infos())

	# Merge panels that shouldn't have been split (speech bubble diving into a panel)
	def merge_panels(self):
		panels_to_remove = []
		for i, p1 in enumerate(self.panels):
			for j, p2 in enumerate(self.panels[i + 1:]):
				if p1.contains(p2):
					panels_to_remove.append(p2)
					p1 = p1.merge(p2)
				elif p2.contains(p1):
					panels_to_remove.append(p1)
					p2 = p2.merge(p1)

		for p in set(panels_to_remove):
			self.panels.remove(p)

		Debug.add_step('Merge panels', self.get_infos())

	# Find out actual gutters between panels
	def actual_gutters(self, func = min):
		gutters_x = []
		gutters_y = []
		for p in self.panels:
			left_panel = p.find_left_panel()
			if left_panel:
				gutters_x.append(p.x - left_panel.r)

			top_panel = p.find_top_panel()
			if top_panel:
				gutters_y.append(p.y - top_panel.b)

		if not gutters_x:
			gutters_x = [1]
		if not gutters_y:
			gutters_y = [1]

		return {'x': func(gutters_x), 'y': func(gutters_y), 'r': -func(gutters_x), 'b': -func(gutters_y)}

	def max_gutter(self):
		return max(self.actual_gutters().values())

	# Expand panels to their neighbour's edge, or page boundaries
	def expand_panels(self):
		gutters = self.actual_gutters()
		for p in self.panels:
			for d in ['x', 'y', 'r', 'b']:  # expand in all four directions
				newcoord = -1
				neighbour = p.find_neighbour_panel(d)
				if neighbour:
					# expand to that neighbour's edge (minus gutter)
					newcoord = getattr(neighbour, {'x': 'r', 'r': 'x', 'y': 'b', 'b': 'y'}[d]) + gutters[d]
				else:
					# expand to the furthest known edge (frame around all panels)
					min_panel = min(self.panels, key = lambda p: getattr(p, d)) if d in [
						'x', 'y'
					] else max(self.panels, key = lambda p: getattr(p, d))
					newcoord = getattr(min_panel, d)

				if newcoord != -1:
					if d in ['r', 'b'] and newcoord > getattr(p, d) or d in ['x', 'y'] and newcoord < getattr(p, d):
						setattr(p, d, newcoord)

		Debug.add_step('Expand panels', self.get_infos())

	# Fix panels simple sorting (issue #12)
	def fix_panels_numbering(self):
		changes = 1
		while changes:
			changes = 0
			for i, p in enumerate(self.panels):
				neighbours_before = [p.find_top_panel()]
				neighbours_before += p.find_all_right_panels() if self.numbering == "rtl" else p.find_all_left_panels()

				for neighbour in neighbours_before:
					if neighbour is None:
						continue
					neighbour_pos = self.panels.index(neighbour)
					if i < neighbour_pos:
						changes += 1
						self.panels.insert(neighbour_pos, self.panels.pop(i))
						break
				if changes > 0:
					break  # start a new whole loop with reordered panels

		Debug.add_step('Numbering fixed', self.get_infos())

	# group big panels together
	def group_big_panels(self):
		grouped = True
		while grouped:
			grouped = False
			for i, p1 in enumerate(self.panels):
				for p2 in self.panels[i + 1:]:
					p3 = p1.group_with(p2)

					other_panels = [p for p in self.panels if p not in [p1, p2]]
					if p3.bumps_into(other_panels):
						continue

					# are there big segments in this panel?
					segments = []
					for s in self.segments:
						if p3.contains_segment(s) and s.dist() > p3.diagonal().dist() / 5:
							if s not in segments:
								segments.append(s)

					if len(segments) > 0:  # maybe allow a small number of big segments here?
						continue

					self.panels.append(p3)
					self.panels.remove(p1)
					self.panels.remove(p2)
					grouped = True
					break

				if grouped:
					break

		Debug.add_step('Group big panels', self.get_infos())