File size: 19,554 Bytes
79914f7 5d975b7 79914f7 a627433 79914f7 a627433 79914f7 a627433 5d975b7 79914f7 a627433 79914f7 a627433 79914f7 a627433 5d975b7 79914f7 93497a7 79914f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
import os
from typing import Callable
import cv2
import warnings
import numpy as np
from image_processing.image import is_contour_rectangular, apply_adaptive_threshold, group_contours_horizontally, group_contours_vertically, adaptive_hconcat, adaptive_vconcat, group_bounding_boxes_horizontally, group_bounding_boxes_vertically
from myutils.myutils import load_images, load_image
from tqdm import tqdm
from image_processing.model import model
from manga_panel_processor import sort_panels_by_column_then_row
class OutputMode:
BOUNDING = 'bounding'
MASKED = 'masked'
def from_index(index: int) -> str:
return [OutputMode.BOUNDING, OutputMode.MASKED][index]
class MergeMode:
NONE = 'none'
VERTICAL = 'vertical'
HORIZONTAL = 'horizontal'
def from_index(index: int) -> str:
return [MergeMode.NONE, MergeMode.VERTICAL, MergeMode.HORIZONTAL][index]
def get_background_intensity_range(grayscale_image: np.ndarray, min_range: int = 1) -> tuple[int, int]:
"""
Returns the minimum and maximum intensity values of the background of the image
"""
edges = [grayscale_image[-1, :], grayscale_image[0, :], grayscale_image[:, 0], grayscale_image[:, -1]]
sorted_edges = sorted(edges, key=lambda x: np.var(x))
least_varied_edge = sorted_edges[0]
max_intensity = max(least_varied_edge)
min_intensity = max(min(min(least_varied_edge), max_intensity - min_range), 0)
return min_intensity, max_intensity
def generate_background_mask(grayscale_image: np.ndarray) -> np.ndarray:
"""
Generates a mask by focusing on the largest area of white pixels
"""
WHITE = 255
LESS_WHITE, _ = get_background_intensity_range(grayscale_image, 25)
LESS_WHITE = max(LESS_WHITE, 240)
ret, thresh = cv2.threshold(grayscale_image, LESS_WHITE, WHITE, cv2.THRESH_BINARY)
nlabels, labels, stats, centroids = cv2.connectedComponentsWithStats(thresh)
mask = np.zeros_like(thresh)
PAGE_TO_SEGMENT_RATIO = 1024
halting_area_size = mask.size // PAGE_TO_SEGMENT_RATIO
mask_height, mask_width = mask.shape
base_background_size_error_threshold = 0.05
whole_background_min_width = mask_width * (1 - base_background_size_error_threshold)
whole_background_min_height = mask_height * (1 - base_background_size_error_threshold)
for i in np.argsort(stats[1:, 4])[::-1]:
contour_index = i + 1
x, y, w, h, area = stats[contour_index]
if area < halting_area_size:
break
if (
(w > whole_background_min_width) or
(h > whole_background_min_height) or
(is_contour_rectangular(cv2.findContours((labels == contour_index).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0][0]))
):
mask[labels == contour_index] = WHITE
mask = cv2.dilate(mask, np.ones((3, 3), np.uint8), iterations=2)
return mask
def extract_panels(
image: np.ndarray,
panel_contours: list[np.ndarray],
accept_page_as_panel: bool = True,
mode: str = OutputMode.BOUNDING,
fill_in_color: tuple[int, int, int] = (0, 0, 0),
) -> list[np.ndarray]:
"""
Extracts panels from the image using the given contours corresponding to the panels
Parameters:
- image: The image to extract the panels from
- panel_contours: The contours corresponding to the panels
- accept_page_as_panel: Whether to accept the whole page as a panel
- mode: The mode to use for extraction
- 'masked': Extracts the panels by cuting out only the inside of the contours
- 'bounding': Extracts the panels by using the bounding boxes of the contours
- fill_in_color: The color to fill in the background of the panel images
"""
height, width = image.shape[:2]
returned_panels = []
for contour in panel_contours:
x, y, w, h = cv2.boundingRect(contour)
if not accept_page_as_panel and ((w >= width * 0.99) or (h >= height * 0.99)):
continue
if mode == 'masked':
mask = np.zeros_like(image)
cv2.drawContours(mask, [contour], -1, (255, 255, 255), -1)
masked_image = cv2.bitwise_and(image, mask)
fitted_panel = masked_image[y:y + h, x:x + w]
fitted_panel = cv2.bitwise_or(cv2.bitwise_and(cv2.bitwise_not(mask[y:y + h, x:x + w]), fill_in_color), fitted_panel)
else:
fitted_panel = image[y:y + h, x:x + w]
returned_panels.append(fitted_panel)
return returned_panels
def preprocess_image(grayscale_image: np.ndarray) -> np.ndarray:
"""
Preprocesses the image for panel extraction
"""
processed_image = cv2.GaussianBlur(grayscale_image, (3, 3), 0)
processed_image = cv2.Laplacian(processed_image, -1)
return processed_image
def preprocess_image_with_dilation(grayscale_image: np.ndarray) -> np.ndarray:
"""
Preprocesses the image for panel extraction
"""
processed_image = cv2.GaussianBlur(grayscale_image, (3, 3), 0)
processed_image = cv2.Laplacian(processed_image, -1)
processed_image = cv2.dilate(processed_image, np.ones((5, 5), np.uint8), iterations=1)
processed_image = 255 - processed_image
return processed_image
def joint_panel_split_extraction(grayscale_image: np.ndarray, background_mask: np.ndarray) -> np.ndarray:
"""
Extracts the panels from the image with splitting the joint panels
"""
pixels_before = np.count_nonzero(background_mask)
background_mask = cv2.ximgproc.thinning(background_mask)
up_kernel = np.array([[0, 0, 0], [0, 1, 0], [0, 1, 0]], np.uint8)
down_kernel = np.array([[0, 1, 0], [0, 1, 0], [0, 0, 0]], np.uint8)
left_kernel = np.array([[0, 0, 0], [0, 1, 1], [0, 0, 0]], np.uint8)
right_kernel = np.array([[0, 0, 0], [1, 1, 0], [0, 0, 0]], np.uint8)
down_right_diagonal_kernel = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 0]], np.uint8)
down_left_diagonal_kernel = np.array([[0, 0, 1], [0, 1, 0], [0, 0, 0]], np.uint8)
up_left_diagonal_kernel = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 1]], np.uint8)
up_right_diagonal_kernel = np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0]], np.uint8)
PAGE_TO_JOINT_OBJECT_RATIO = 3
image_height, image_width = grayscale_image.shape
height_based_size = image_height // PAGE_TO_JOINT_OBJECT_RATIO
width_based_size = (2 * image_width) // PAGE_TO_JOINT_OBJECT_RATIO
height_based_size += height_based_size % 2 + 1
width_based_size += width_based_size % 2 + 1
up_dilation_kernel = np.zeros((height_based_size, height_based_size), np.uint8)
up_dilation_kernel[height_based_size // 2:, height_based_size // 2] = 1
down_dilation_kernel = np.zeros((height_based_size, height_based_size), np.uint8)
down_dilation_kernel[:height_based_size // 2 + 1, height_based_size // 2] = 1
left_dilation_kernel = np.zeros((width_based_size, width_based_size), np.uint8)
left_dilation_kernel[width_based_size // 2, width_based_size // 2:] = 1
right_dilation_kernel = np.zeros((width_based_size, width_based_size), np.uint8)
right_dilation_kernel[width_based_size // 2, :width_based_size // 2 + 1] = 1
min_based_size = min(width_based_size, height_based_size)
down_right_dilation_kernel = np.identity(min_based_size // 2 + 1, dtype=np.uint8)
down_right_dilation_kernel = np.pad(down_right_dilation_kernel, ((0, min_based_size // 2), (0, min_based_size // 2)))
up_left_dilation_kernel = np.identity(min_based_size // 2 + 1, dtype=np.uint8)
up_left_dilation_kernel = np.pad(up_left_dilation_kernel, ((min_based_size // 2, 0), (0, min_based_size // 2)))
up_right_dilation_kernel = np.flip(np.identity(min_based_size // 2 + 1, dtype=np.uint8), axis=1)
up_right_dilation_kernel = np.pad(up_right_dilation_kernel, ((min_based_size // 2, 0), (0, min_based_size // 2)))
down_left_dilation_kernel = np.flip(np.identity(min_based_size // 2 + 1, dtype=np.uint8), axis=1)
down_left_dilation_kernel = np.pad(down_left_dilation_kernel, ((0, min_based_size // 2), (min_based_size // 2, 0)))
match_kernels = [
up_kernel,
down_kernel,
left_kernel,
right_kernel,
down_right_diagonal_kernel,
down_left_diagonal_kernel,
up_left_diagonal_kernel,
up_right_diagonal_kernel,
]
dilation_kernels = [
up_dilation_kernel,
down_dilation_kernel,
left_dilation_kernel,
right_dilation_kernel,
down_right_dilation_kernel,
down_left_dilation_kernel,
up_left_dilation_kernel,
up_right_dilation_kernel,
]
def get_dots(grayscale_image: np.ndarray, kernel: np.ndarray) -> tuple[np.ndarray, int]:
temp = cv2.matchTemplate(grayscale_image, kernel, cv2.TM_CCOEFF_NORMED)
_, temp = cv2.threshold(temp, 0.9, 1, cv2.THRESH_BINARY)
temp = np.where(temp == 1, 255, 0).astype(np.uint8)
pad_height = (kernel.shape[0] - 1) // 2
pad_width = (kernel.shape[1] - 1) // 2
temp = cv2.copyMakeBorder(temp, pad_height, kernel.shape[0] - pad_height - 1, pad_width, kernel.shape[1] - pad_width - 1, cv2.BORDER_CONSTANT, value=0)
return temp
for match_kernel, dilation_kernel in zip(match_kernels, dilation_kernels):
dots = get_dots(background_mask, match_kernel)
lines = cv2.dilate(dots, dilation_kernel, iterations=1)
background_mask = cv2.bitwise_or(background_mask, lines)
pixels_now = np.count_nonzero(background_mask)
dilation_size = pixels_before // (4 * pixels_now)
dilation_size += dilation_size % 2 + 1
background_mask = cv2.dilate(background_mask, np.ones((dilation_size, dilation_size), np.uint8), iterations=1)
page_without_background = 255 - background_mask
return page_without_background
def is_contour_sufficiently_big(contour: np.ndarray, image_height: int, image_width: int) -> bool:
PAGE_TO_PANEL_RATIO = 32
image_area = image_width * image_height
area_threshold = image_area // PAGE_TO_PANEL_RATIO
area = cv2.contourArea(contour)
return area > area_threshold
def threshold_extraction(
image: np.ndarray,
grayscale_image: np.ndarray,
mode: str = OutputMode.BOUNDING,
) -> list[np.ndarray]:
"""
Extracts panels from the image using thresholding
"""
processed_image = cv2.GaussianBlur(grayscale_image, (3, 3), 0)
processed_image = cv2.Laplacian(processed_image, -1)
_, thresh = cv2.threshold(processed_image, 8, 255, cv2.THRESH_BINARY)
processed_image = apply_adaptive_threshold(processed_image)
processed_image = cv2.subtract(processed_image, thresh)
processed_image = cv2.dilate(processed_image, np.ones((3, 3), np.uint8), iterations=2)
contours, _ = cv2.findContours(processed_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = list(filter(lambda c: is_contour_sufficiently_big(c, image.shape[0], image.shape[1]), contours))
panels = extract_panels(image, contours, False, mode=mode)
return panels
def get_page_without_background(grayscale_image: np.ndarray, background_mask: np.ndarray, split_joint_panels = False) -> np.ndarray:
"""
Returns the page without the background
"""
STRIPE_FORMAT_MASK_AREA_RATIO = 0.3
mask_area = np.count_nonzero(background_mask)
mask_area_ratio = mask_area / background_mask.size
if STRIPE_FORMAT_MASK_AREA_RATIO > mask_area_ratio and split_joint_panels:
page_without_background = joint_panel_split_extraction(grayscale_image, background_mask)
else:
page_without_background = cv2.subtract(grayscale_image, background_mask)
return page_without_background
def get_fallback_panels(
image: np.ndarray,
grayscale_image: np.ndarray,
fallback: bool,
panels: list[np.ndarray],
mode: str = OutputMode.BOUNDING,
) -> list[np.ndarray]:
"""
Checks if the fallback is needed and returns the appropriate panels
Parameters:
- mode: The mode to use for extraction
- 'masked': Extracts the panels by cuting out only the inside of the contours
- 'bounding': Extracts the panels by using the bounding boxes of the contours
"""
if fallback and len(panels) < 2:
tmp = threshold_extraction(image, grayscale_image, mode=mode)
if len(tmp) > len(panels):
return tmp
return panels
def generate_panel_blocks(
image: np.ndarray,
background_generator: Callable[[np.ndarray], np.ndarray] = generate_background_mask,
split_joint_panels: bool = False,
fallback: bool = True,
mode: str = OutputMode.BOUNDING,
merge: str = MergeMode.NONE,
rtl_order: bool = False
) -> list[np.ndarray]:
"""
Generates the separate panel images from the base image
Parameters:
- mode: The mode to use for extraction
- 'masked': Extracts the panels by cuting out only the inside of the contours
- 'bounding': Extracts the panels by using the bounding boxes of the contours
- rtl_order: If True, sort panels from right-to-left. Otherwise, left-to-right.
"""
grayscale_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
processed_image = preprocess_image_with_dilation(grayscale_image)
background_mask = background_generator(processed_image)
page_without_background = get_page_without_background(grayscale_image, background_mask, split_joint_panels)
contours, _ = cv2.findContours(page_without_background, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = list(filter(lambda c: is_contour_sufficiently_big(c, image.shape[0], image.shape[1]), contours))
# Sort by top-to-bottom (y-coordinate) first, then by horizontal order.
# For RTL, we sort by x-coordinate in descending order (by negating it).
if contours:
image_height = image.shape[0]
contours = sort_panels_by_column_then_row(contours, rtl_order)
def get_panels(contours):
panels = extract_panels(image, contours, mode=mode)
panels = get_fallback_panels(image, grayscale_image, fallback, panels, mode=mode)
return panels
panels = []
if merge == MergeMode.NONE:
panels = get_panels(contours)
elif merge == MergeMode.HORIZONTAL:
grouped_contours = group_contours_horizontally(contours)
for group in grouped_contours:
panels.append(adaptive_hconcat(get_panels(group)))
elif merge == MergeMode.VERTICAL:
grouped_contours = group_contours_vertically(contours)
for group in grouped_contours:
panels.append(adaptive_vconcat(get_panels(group)))
return panels
def generate_panel_blocks_by_ai(
image: np.ndarray,
merge: str = MergeMode.NONE,
rtl_order: bool = False
) -> list[np.ndarray]:
"""
Generates the separate panel images from the base image using AI with merge
Parameters:
- rtl_order: If True, sort panels from right-to-left. Otherwise, left-to-right.
"""
grayscale_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
processed_image = preprocess_image(grayscale_image)
warnings.filterwarnings("ignore", category=FutureWarning) # Ignore 'FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.'
results = model(processed_image)
warnings.filterwarnings("default", category=FutureWarning)
bounding_boxes = []
for detection in results.xyxy[0]: # Access predictions in (x1, y1, x2, y2, confidence, class) format
x1, y1, x2, y2, conf, cls = detection.tolist() # Convert to Python list
x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
bounding_boxes.append((x1, y1, x2 - x1, y2 - y1))
# Bounding boxes are already (x, y, w, h), so we access coordinates directly.
if bounding_boxes:
image_height = image.shape[0]
bounding_boxes = sort_panels_by_column_then_row(bounding_boxes, rtl_order)
def get_panels(bounding_boxes):
panels = []
for x, y, w, h in bounding_boxes:
panel = image[y:y + h, x:x + w]
panels.append(panel)
return panels
panels = []
if merge == MergeMode.NONE:
panels = get_panels(bounding_boxes)
elif merge == MergeMode.HORIZONTAL:
grouped_bounding_boxes = group_bounding_boxes_horizontally(bounding_boxes)
for group in grouped_bounding_boxes:
panels.append(adaptive_hconcat(get_panels(group)))
elif merge == MergeMode.VERTICAL:
grouped_bounding_boxes = group_bounding_boxes_vertically(bounding_boxes)
for group in grouped_bounding_boxes:
panels.append(adaptive_vconcat(get_panels(group)))
return panels
def extract_panels_for_image(
image_path: str,
output_dir: str,
fallback: bool = True,
split_joint_panels: bool = False,
mode: str = OutputMode.BOUNDING,
merge: str = MergeMode.NONE
) -> None:
"""
Extracts panels for a single image
"""
if not os.path.exists(image_path):
return
image_path = os.path.abspath(image_path)
image = load_image(os.path.dirname(image_path), image_path)
image_name, image_ext = os.path.splitext(image.image_name)
panel_blocks = generate_panel_blocks(image.image, split_joint_panels=split_joint_panels, fallback=fallback, mode=mode, merge=merge)
for k, panel in enumerate(tqdm(panel_blocks, total=len(panel_blocks))):
out_path = os.path.join(output_dir, f"{image_name}_{k}{image_ext}")
cv2.imwrite(out_path, panel)
def extract_panels_for_images_in_folder(
input_dir: str,
output_dir: str,
fallback: bool = True,
split_joint_panels: bool = False,
mode: str = OutputMode.BOUNDING,
merge: str = MergeMode.NONE
) -> tuple[int, int]:
"""
Basically the main function of the program,
this is written with cli usage in mind
"""
if not os.path.exists(output_dir):
return (0, 0)
files = os.listdir(input_dir)
num_files = len(files)
num_panels = 0
for _, image in enumerate(tqdm(load_images(input_dir), total=num_files)):
image_name, image_ext = os.path.splitext(image.image_name)
panel_blocks = generate_panel_blocks(image.image, fallback=fallback, split_joint_panels=split_joint_panels, mode=mode, merge=merge)
for j, panel in enumerate(panel_blocks):
out_path = os.path.join(output_dir, f"{image_name}_{j}{image_ext}")
cv2.imwrite(out_path, panel)
num_panels += len(panel_blocks)
return (num_files, num_panels)
def extract_panels_for_images_in_folder_by_ai(
input_dir: str,
output_dir: str
) -> tuple[int, int]:
"""
Basically the main function of the program,
this is written with cli usage in mind
"""
if not os.path.exists(output_dir):
return (0, 0)
files = os.listdir(input_dir)
num_files = len(files)
num_panels = 0
for _, image in enumerate(tqdm(load_images(input_dir), total=num_files)):
image_name, image_ext = os.path.splitext(image.image_name)
panel_blocks = generate_panel_blocks_by_ai(image.image)
for j, panel in enumerate(panel_blocks):
out_path = os.path.join(output_dir, f"{image_name}_{j}{image_ext}")
cv2.imwrite(out_path, panel)
num_panels += len(panel_blocks)
return (num_files, num_panels)
|