File size: 19,554 Bytes
79914f7
 
 
 
 
 
 
 
 
5d975b7
79914f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a627433
 
79914f7
 
 
 
 
 
 
 
a627433
79914f7
 
 
 
 
 
 
 
a627433
 
 
 
 
5d975b7
79914f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a627433
 
 
 
 
79914f7
 
a627433
 
 
79914f7
 
 
 
 
 
 
 
 
 
 
 
 
a627433
 
 
 
5d975b7
79914f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93497a7
79914f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import os
from typing import Callable
import cv2
import warnings
import numpy as np
from image_processing.image import is_contour_rectangular, apply_adaptive_threshold, group_contours_horizontally, group_contours_vertically, adaptive_hconcat, adaptive_vconcat, group_bounding_boxes_horizontally, group_bounding_boxes_vertically
from myutils.myutils import load_images, load_image
from tqdm import tqdm
from image_processing.model import model
from manga_panel_processor import sort_panels_by_column_then_row

class OutputMode:
    BOUNDING = 'bounding'
    MASKED = 'masked'

    def from_index(index: int) -> str:
        return [OutputMode.BOUNDING, OutputMode.MASKED][index]


class MergeMode:
    NONE = 'none'
    VERTICAL = 'vertical'
    HORIZONTAL = 'horizontal'

    def from_index(index: int) -> str:
        return [MergeMode.NONE, MergeMode.VERTICAL, MergeMode.HORIZONTAL][index]
    

def get_background_intensity_range(grayscale_image: np.ndarray, min_range: int = 1) -> tuple[int, int]:
    """
    Returns the minimum and maximum intensity values of the background of the image
    """
    edges = [grayscale_image[-1, :], grayscale_image[0, :], grayscale_image[:, 0], grayscale_image[:, -1]]
    sorted_edges = sorted(edges, key=lambda x: np.var(x))

    least_varied_edge = sorted_edges[0]

    max_intensity = max(least_varied_edge)
    min_intensity = max(min(min(least_varied_edge), max_intensity - min_range), 0)

    return min_intensity, max_intensity


def generate_background_mask(grayscale_image: np.ndarray) -> np.ndarray:
    """
    Generates a mask by focusing on the largest area of white pixels
    """
    WHITE = 255
    LESS_WHITE, _ = get_background_intensity_range(grayscale_image, 25)
    LESS_WHITE = max(LESS_WHITE, 240)

    ret, thresh = cv2.threshold(grayscale_image, LESS_WHITE, WHITE, cv2.THRESH_BINARY)
    nlabels, labels, stats, centroids = cv2.connectedComponentsWithStats(thresh)

    mask = np.zeros_like(thresh)

    PAGE_TO_SEGMENT_RATIO = 1024

    halting_area_size = mask.size // PAGE_TO_SEGMENT_RATIO

    mask_height, mask_width = mask.shape
    base_background_size_error_threshold = 0.05
    whole_background_min_width = mask_width * (1 - base_background_size_error_threshold)
    whole_background_min_height = mask_height * (1 - base_background_size_error_threshold)

    for i in np.argsort(stats[1:, 4])[::-1]:
        contour_index = i + 1
        x, y, w, h, area = stats[contour_index]
        if area < halting_area_size:
            break
        if (
            (w > whole_background_min_width) or
            (h > whole_background_min_height) or
            (is_contour_rectangular(cv2.findContours((labels == contour_index).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0][0]))
        ):
            mask[labels == contour_index] = WHITE

    mask = cv2.dilate(mask, np.ones((3, 3), np.uint8), iterations=2)

    return mask


def extract_panels(
    image: np.ndarray,
    panel_contours: list[np.ndarray],
    accept_page_as_panel: bool = True,
    mode: str = OutputMode.BOUNDING,
    fill_in_color: tuple[int, int, int] = (0, 0, 0),
) -> list[np.ndarray]:
    """
    Extracts panels from the image using the given contours corresponding to the panels
    
    Parameters:
    - image: The image to extract the panels from
    - panel_contours: The contours corresponding to the panels
    - accept_page_as_panel: Whether to accept the whole page as a panel
    - mode: The mode to use for extraction
        - 'masked': Extracts the panels by cuting out only the inside of the contours
        - 'bounding': Extracts the panels by using the bounding boxes of the contours
    - fill_in_color: The color to fill in the background of the panel images
    """
    height, width = image.shape[:2]

    returned_panels = []

    for contour in panel_contours:
        x, y, w, h = cv2.boundingRect(contour)

        if not accept_page_as_panel and ((w >= width * 0.99) or (h >= height * 0.99)):
            continue

        if mode == 'masked':
            mask = np.zeros_like(image)
            cv2.drawContours(mask, [contour], -1, (255, 255, 255), -1)
            masked_image = cv2.bitwise_and(image, mask)
            fitted_panel = masked_image[y:y + h, x:x + w]
            fitted_panel = cv2.bitwise_or(cv2.bitwise_and(cv2.bitwise_not(mask[y:y + h, x:x + w]), fill_in_color), fitted_panel)
        else:
            fitted_panel = image[y:y + h, x:x + w]
        
        returned_panels.append(fitted_panel)

    return returned_panels


def preprocess_image(grayscale_image: np.ndarray) -> np.ndarray:
    """
    Preprocesses the image for panel extraction
    """
    processed_image = cv2.GaussianBlur(grayscale_image, (3, 3), 0)
    processed_image = cv2.Laplacian(processed_image, -1)
    return processed_image


def preprocess_image_with_dilation(grayscale_image: np.ndarray) -> np.ndarray:
    """
    Preprocesses the image for panel extraction
    """
    processed_image = cv2.GaussianBlur(grayscale_image, (3, 3), 0)
    processed_image = cv2.Laplacian(processed_image, -1)
    processed_image = cv2.dilate(processed_image, np.ones((5, 5), np.uint8), iterations=1)
    processed_image = 255 - processed_image
    return processed_image


def joint_panel_split_extraction(grayscale_image: np.ndarray, background_mask: np.ndarray) -> np.ndarray:
    """
    Extracts the panels from the image with splitting the joint panels
    """
    pixels_before = np.count_nonzero(background_mask)
    background_mask = cv2.ximgproc.thinning(background_mask) 
    
    up_kernel = np.array([[0, 0, 0], [0, 1, 0], [0, 1, 0]], np.uint8)
    down_kernel = np.array([[0, 1, 0], [0, 1, 0], [0, 0, 0]], np.uint8)
    left_kernel = np.array([[0, 0, 0], [0, 1, 1], [0, 0, 0]], np.uint8)
    right_kernel = np.array([[0, 0, 0], [1, 1, 0], [0, 0, 0]], np.uint8)

    down_right_diagonal_kernel = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 0]], np.uint8)
    down_left_diagonal_kernel = np.array([[0, 0, 1], [0, 1, 0], [0, 0, 0]], np.uint8)
    up_left_diagonal_kernel = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 1]], np.uint8)
    up_right_diagonal_kernel = np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0]], np.uint8)
    
    PAGE_TO_JOINT_OBJECT_RATIO = 3
    image_height, image_width = grayscale_image.shape

    height_based_size = image_height // PAGE_TO_JOINT_OBJECT_RATIO
    width_based_size = (2 * image_width) // PAGE_TO_JOINT_OBJECT_RATIO

    height_based_size += height_based_size % 2 + 1
    width_based_size += width_based_size % 2 + 1

    up_dilation_kernel = np.zeros((height_based_size, height_based_size), np.uint8)
    up_dilation_kernel[height_based_size // 2:, height_based_size // 2] = 1

    down_dilation_kernel = np.zeros((height_based_size, height_based_size), np.uint8)
    down_dilation_kernel[:height_based_size // 2 + 1, height_based_size // 2] = 1

    left_dilation_kernel = np.zeros((width_based_size, width_based_size), np.uint8)
    left_dilation_kernel[width_based_size // 2, width_based_size // 2:] = 1

    right_dilation_kernel = np.zeros((width_based_size, width_based_size), np.uint8)
    right_dilation_kernel[width_based_size // 2, :width_based_size // 2 + 1] = 1

    min_based_size = min(width_based_size, height_based_size)

    down_right_dilation_kernel = np.identity(min_based_size // 2 + 1, dtype=np.uint8)
    down_right_dilation_kernel = np.pad(down_right_dilation_kernel, ((0, min_based_size // 2), (0, min_based_size // 2)))

    up_left_dilation_kernel = np.identity(min_based_size // 2 + 1, dtype=np.uint8)
    up_left_dilation_kernel = np.pad(up_left_dilation_kernel, ((min_based_size // 2, 0), (0, min_based_size // 2)))

    up_right_dilation_kernel = np.flip(np.identity(min_based_size // 2 + 1, dtype=np.uint8), axis=1)
    up_right_dilation_kernel = np.pad(up_right_dilation_kernel, ((min_based_size // 2, 0), (0, min_based_size // 2)))

    down_left_dilation_kernel = np.flip(np.identity(min_based_size // 2 + 1, dtype=np.uint8), axis=1)
    down_left_dilation_kernel = np.pad(down_left_dilation_kernel, ((0, min_based_size // 2), (min_based_size // 2, 0)))

    match_kernels = [
        up_kernel,
        down_kernel,
        left_kernel,
        right_kernel,
        down_right_diagonal_kernel,
        down_left_diagonal_kernel,
        up_left_diagonal_kernel,
        up_right_diagonal_kernel,
    ]

    dilation_kernels = [
        up_dilation_kernel,
        down_dilation_kernel,
        left_dilation_kernel,
        right_dilation_kernel,
        down_right_dilation_kernel,
        down_left_dilation_kernel,
        up_left_dilation_kernel,
        up_right_dilation_kernel,
    ]

    def get_dots(grayscale_image: np.ndarray, kernel: np.ndarray) -> tuple[np.ndarray, int]:
        temp = cv2.matchTemplate(grayscale_image, kernel, cv2.TM_CCOEFF_NORMED)
        _, temp = cv2.threshold(temp, 0.9, 1, cv2.THRESH_BINARY)
        temp = np.where(temp == 1, 255, 0).astype(np.uint8)
        pad_height = (kernel.shape[0] - 1) // 2
        pad_width = (kernel.shape[1] - 1) // 2
        temp = cv2.copyMakeBorder(temp, pad_height, kernel.shape[0] - pad_height - 1, pad_width, kernel.shape[1] - pad_width - 1, cv2.BORDER_CONSTANT, value=0)
        return temp
    
    for match_kernel, dilation_kernel in zip(match_kernels, dilation_kernels):
        dots = get_dots(background_mask, match_kernel)
        lines = cv2.dilate(dots, dilation_kernel, iterations=1)
        background_mask = cv2.bitwise_or(background_mask, lines)

    pixels_now = np.count_nonzero(background_mask)
    dilation_size = pixels_before // (4  * pixels_now)
    dilation_size += dilation_size % 2 + 1
    background_mask = cv2.dilate(background_mask, np.ones((dilation_size, dilation_size), np.uint8), iterations=1)

    page_without_background = 255 - background_mask

    return page_without_background


def is_contour_sufficiently_big(contour: np.ndarray, image_height: int, image_width: int) -> bool:
    PAGE_TO_PANEL_RATIO = 32
    image_area = image_width * image_height
    area_threshold = image_area // PAGE_TO_PANEL_RATIO
    area = cv2.contourArea(contour)
    return area > area_threshold


def threshold_extraction(
        image: np.ndarray, 
        grayscale_image: np.ndarray, 
        mode: str = OutputMode.BOUNDING,
) -> list[np.ndarray]:
    """
    Extracts panels from the image using thresholding
    """
    processed_image = cv2.GaussianBlur(grayscale_image, (3, 3), 0)
    processed_image = cv2.Laplacian(processed_image, -1)
    _, thresh = cv2.threshold(processed_image, 8, 255, cv2.THRESH_BINARY)
    processed_image = apply_adaptive_threshold(processed_image)
    processed_image = cv2.subtract(processed_image, thresh)
    processed_image = cv2.dilate(processed_image, np.ones((3, 3), np.uint8), iterations=2)
    contours, _ = cv2.findContours(processed_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    contours = list(filter(lambda c: is_contour_sufficiently_big(c, image.shape[0], image.shape[1]), contours))
    panels = extract_panels(image, contours, False, mode=mode)

    return panels


def get_page_without_background(grayscale_image: np.ndarray, background_mask: np.ndarray, split_joint_panels = False) -> np.ndarray:
    """
    Returns the page without the background
    """
    STRIPE_FORMAT_MASK_AREA_RATIO = 0.3

    mask_area = np.count_nonzero(background_mask)
    mask_area_ratio = mask_area / background_mask.size

    if STRIPE_FORMAT_MASK_AREA_RATIO > mask_area_ratio and split_joint_panels:
        page_without_background = joint_panel_split_extraction(grayscale_image, background_mask)
    else:
        page_without_background = cv2.subtract(grayscale_image, background_mask)

    return page_without_background


def get_fallback_panels(
        image: np.ndarray, 
        grayscale_image: np.ndarray, 
        fallback: bool, 
        panels: list[np.ndarray],
        mode: str = OutputMode.BOUNDING,
) -> list[np.ndarray]:
    """
    Checks if the fallback is needed and returns the appropriate panels
    
    Parameters:
    - mode: The mode to use for extraction
        - 'masked': Extracts the panels by cuting out only the inside of the contours
        - 'bounding': Extracts the panels by using the bounding boxes of the contours
    """
    if fallback and len(panels) < 2:
        tmp = threshold_extraction(image, grayscale_image, mode=mode)
        if len(tmp) > len(panels):
            return tmp
    
    return panels


def generate_panel_blocks(
        image: np.ndarray, 
        background_generator: Callable[[np.ndarray], np.ndarray] = generate_background_mask,
        split_joint_panels: bool = False,
        fallback: bool = True,
        mode: str = OutputMode.BOUNDING,
        merge: str = MergeMode.NONE,
        rtl_order: bool = False
) -> list[np.ndarray]:
    """
    Generates the separate panel images from the base image
    
    Parameters:
    - mode: The mode to use for extraction
        - 'masked': Extracts the panels by cuting out only the inside of the contours
        - 'bounding': Extracts the panels by using the bounding boxes of the contours
    - rtl_order: If True, sort panels from right-to-left. Otherwise, left-to-right.
    """

    grayscale_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    processed_image = preprocess_image_with_dilation(grayscale_image)
    background_mask = background_generator(processed_image)
    page_without_background = get_page_without_background(grayscale_image, background_mask, split_joint_panels)
    contours, _ = cv2.findContours(page_without_background, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    contours = list(filter(lambda c: is_contour_sufficiently_big(c, image.shape[0], image.shape[1]), contours))
    
    # Sort by top-to-bottom (y-coordinate) first, then by horizontal order.
    # For RTL, we sort by x-coordinate in descending order (by negating it).
    if contours:
        image_height = image.shape[0]
        contours = sort_panels_by_column_then_row(contours, rtl_order)

    def get_panels(contours):
        panels = extract_panels(image, contours, mode=mode)
        panels = get_fallback_panels(image, grayscale_image, fallback, panels, mode=mode)
        return panels

    panels = []
    if merge == MergeMode.NONE:
        panels = get_panels(contours)
    elif merge == MergeMode.HORIZONTAL:
        grouped_contours = group_contours_horizontally(contours)
        for group in grouped_contours:
            panels.append(adaptive_hconcat(get_panels(group)))
    elif merge == MergeMode.VERTICAL:
        grouped_contours = group_contours_vertically(contours)
        for group in grouped_contours:
            panels.append(adaptive_vconcat(get_panels(group)))

    return panels


def generate_panel_blocks_by_ai(
        image: np.ndarray,
        merge: str = MergeMode.NONE,
        rtl_order: bool = False
) -> list[np.ndarray]:
    """
    Generates the separate panel images from the base image using AI with merge
    
    Parameters:
    - rtl_order: If True, sort panels from right-to-left. Otherwise, left-to-right.
    """
    grayscale_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    processed_image = preprocess_image(grayscale_image)

    warnings.filterwarnings("ignore", category=FutureWarning) # Ignore 'FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.'
    results = model(processed_image)
    warnings.filterwarnings("default", category=FutureWarning)

    bounding_boxes = []
    for detection in results.xyxy[0]:  # Access predictions in (x1, y1, x2, y2, confidence, class) format
        x1, y1, x2, y2, conf, cls = detection.tolist()  # Convert to Python list
        x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
        bounding_boxes.append((x1, y1, x2 - x1, y2 - y1))
        
    # Bounding boxes are already (x, y, w, h), so we access coordinates directly.
    if bounding_boxes:
        image_height = image.shape[0]
        bounding_boxes = sort_panels_by_column_then_row(bounding_boxes, rtl_order)

    def get_panels(bounding_boxes):
        panels = []
        for x, y, w, h in bounding_boxes:
            panel = image[y:y + h, x:x + w]
            panels.append(panel)
        return panels

    panels = []
    if merge == MergeMode.NONE:
        panels = get_panels(bounding_boxes)
    elif merge == MergeMode.HORIZONTAL:
        grouped_bounding_boxes = group_bounding_boxes_horizontally(bounding_boxes)
        for group in grouped_bounding_boxes:
            panels.append(adaptive_hconcat(get_panels(group)))
    elif merge == MergeMode.VERTICAL:
        grouped_bounding_boxes = group_bounding_boxes_vertically(bounding_boxes)
        for group in grouped_bounding_boxes:
            panels.append(adaptive_vconcat(get_panels(group)))

    return panels


def extract_panels_for_image(
        image_path: str, 
        output_dir: str, 
        fallback: bool = True, 
        split_joint_panels: bool = False,
        mode: str = OutputMode.BOUNDING,
        merge: str = MergeMode.NONE
        ) -> None:
    """
    Extracts panels for a single image
    """
    if not os.path.exists(image_path):
        return
    image_path = os.path.abspath(image_path)
    image = load_image(os.path.dirname(image_path), image_path)
    image_name, image_ext = os.path.splitext(image.image_name)
    panel_blocks = generate_panel_blocks(image.image, split_joint_panels=split_joint_panels, fallback=fallback, mode=mode, merge=merge)
    for k, panel in enumerate(tqdm(panel_blocks, total=len(panel_blocks))):
        out_path = os.path.join(output_dir, f"{image_name}_{k}{image_ext}")
        cv2.imwrite(out_path, panel)


def extract_panels_for_images_in_folder(
        input_dir: str, 
        output_dir: str, 
        fallback: bool = True, 
        split_joint_panels: bool = False,
        mode: str = OutputMode.BOUNDING,
        merge: str = MergeMode.NONE
        ) -> tuple[int, int]:
    """
    Basically the main function of the program,
    this is written with cli usage in mind
    """
    if not os.path.exists(output_dir):
        return (0, 0)
    files = os.listdir(input_dir)
    num_files = len(files)
    num_panels = 0
    for _, image in enumerate(tqdm(load_images(input_dir), total=num_files)):
        image_name, image_ext = os.path.splitext(image.image_name)
        panel_blocks = generate_panel_blocks(image.image, fallback=fallback, split_joint_panels=split_joint_panels, mode=mode, merge=merge)
        for j, panel in enumerate(panel_blocks):
            out_path = os.path.join(output_dir, f"{image_name}_{j}{image_ext}")
            cv2.imwrite(out_path, panel)
        num_panels += len(panel_blocks)
    return (num_files, num_panels)


def extract_panels_for_images_in_folder_by_ai(
        input_dir: str, 
        output_dir: str
        ) -> tuple[int, int]:
    """
    Basically the main function of the program,
    this is written with cli usage in mind
    """
    if not os.path.exists(output_dir):
        return (0, 0)
    files = os.listdir(input_dir)
    num_files = len(files)
    num_panels = 0
    for _, image in enumerate(tqdm(load_images(input_dir), total=num_files)):
        image_name, image_ext = os.path.splitext(image.image_name)
        panel_blocks = generate_panel_blocks_by_ai(image.image)
        for j, panel in enumerate(panel_blocks):
            out_path = os.path.join(output_dir, f"{image_name}_{j}{image_ext}")
            cv2.imwrite(out_path, panel)
        num_panels += len(panel_blocks)
    return (num_files, num_panels)