File size: 4,965 Bytes
baaf428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58cddf3
baaf428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import numpy as np
import pandas as pd
from string import Template
import streamlit as st
import base64
from datasets import load_dataset
from datasets import Dataset
import torch
from tqdm import tqdm
from peft import LoraConfig, get_peft_model

import transformers
# from transformers import AutoModelForCausalLM, AdapterConfig
from transformers import AutoConfig,AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer
from transformers import TrainingArguments

from peft import LoraConfig
from peft import *

from trl import SFTTrainer, DataCollatorForCompletionOnlyLM
from langchain.prompts import PromptTemplate

from IPython.display import Markdown, display

peft_model_id = "./"
config = PeftConfig.from_pretrained(peft_model_id)

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    return_dict=True,
    quantization_config=bnb_config,
    device_map="auto",
    trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token


model = PeftModel.from_pretrained(model, peft_model_id)

prompt_template = """Answer the following multiple choice question by giving the most appropriate response. Answer should be one among [A, B, C, D, E] \
 in order of the most likely to be correct to the least likely to be correct.'
    
Question: {prompt}\n
A) {a}\n
B) {b}\n
C) {c}\n
D) {d}\n
E) {e}\n

Answer: """

prompt = PromptTemplate(template=prompt_template, input_variables=['prompt', 'a', 'b', 'c', 'd', 'e'])


def format_text_to_prompt(example):
    ans = prompt.format(prompt=example['prompt'], 
                         a=example['A'], 
                         b=example['B'], 
                         c=example['C'], 
                         d=example['D'], 
                         e=example['E'])
    return {"ans": ans}

def get_ans(text):
    inputs = tokenizer(text, return_tensors='pt')
    logits = model(input_ids=inputs['input_ids'].cuda(), attention_mask=inputs['attention_mask'].cuda()).logits[0, -1]
    
    # Create a list of tuples having (logit, 'option') format
    options_list = [(logits[tokenizer(' A').input_ids[-1]], 'A'), (logits[tokenizer(' B').input_ids[-1]], 'B'), (logits[tokenizer(' C').input_ids[-1]], 'C'), (logits[tokenizer(' D').input_ids[-1]], 'D'), (logits[tokenizer(' E').input_ids[-1]], 'E')] 
    options_list = sorted(options_list, reverse=True)
    ans_list = []
    for i in range(3):
        ans_list.append(options_list[i][1])
        
    return ans_list


def get_base64_of_bin_file(bin_file):
    with open(bin_file, 'rb') as f:
        data = f.read()
    return base64.b64encode(data).decode()

def set_png_as_page_bg(png_file):
    img = get_base64_of_bin_file(png_file)
    page_bg_img = f"""
        <style>
        [data-testid="stAppViewContainer"] > .main {{
        background-image: url("https://www.tata.com/content/dam/tata/images/verticals/desktop/banner_travel_umaidbhavan_desktop_1920x1080.jpg");
        background-size: 200%;
        background-position: center;
        background-repeat: no-repeat;
        background-attachment: local;
        }}

        [data-testid="stSidebar"] > div:first-child {{
        background-image: url("data:image/png;base64,{img}");
        background-position: center; 
        background-repeat: no-repeat;
        background-attachment: fixed;
        }}

        [data-testid="stHeader"] {{
        background: rgba(0,0,0,0);
        }}

        [data-testid="stToolbar"] {{
        right: 2rem;
        }}
        </style>
        """

    st.markdown(page_bg_img, unsafe_allow_html=True)

def get_base64_encoded_image(image_path):
    with open(image_path, "rb") as img_file:
        encoded_string = base64.b64encode(img_file.read()).decode("utf-8")
    return encoded_string


def main():
    set_png_as_page_bg("net_technology_5407.jpg")
    image_path = "artificial-intelligence.jpg"  # Replace with the actual image file path

    st.title("Sci-mcq-GPT")


    link = "https://drive.google.com/file/d/1_2TqNNyoczhxIBmU7BpOzEi2bu3MC-sx/view?usp=sharing"
    icon_path = "pdf download logo.png"
    encoded_image = get_base64_encoded_image(icon_path)
    lnk = f'<a href="{link}"><img src="data:image/png;base64,{encoded_image}" width="50" height="50"></a>'
    col = st.sidebar
    col.markdown(lnk, unsafe_allow_html=True)

    st.subheader("Ask Q&A")
    col1, col2 = st.columns(2)
    query = col1.text_area("Enter your question")

    if col1.button("Get Answer"):
        ans = get_ans(query)
        print(ans)
        col2.text_area("Sci-mcq-GPT Response", ans)

    else:
        col2.text_area("Sci-mcq-GPT Response", value="")

    col_sidebar = st.sidebar
    col_sidebar.image(image_path, caption=" ", width=300)

if __name__ == "__main__":
    main()