File size: 1,957 Bytes
d66d160
8090b75
 
 
4625865
8f420ad
c47a41a
 
8090b75
d66d160
 
 
 
 
 
c47a41a
d66d160
 
 
3ce0ef7
d66d160
d7d1270
c47a41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7d1270
c47a41a
d7d1270
c47a41a
 
d7d1270
 
 
c47a41a
3decb3e
c47a41a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from transformers import ViTConfig, ViTForImageClassification
from transformers import ViTFeatureExtractor
from PIL import Image
import requests
import matplotlib.pyplot as plt
import gradio as gr
from transformers import ImageClassificationPipeline, PerceiverForImageClassificationConvProcessing, PerceiverFeatureExtractor
import torch


# option 1: load with randomly initialized weights (train from scratch)

config = ViTConfig(num_hidden_layers=12, hidden_size=768)
model = ViTForImageClassification(config)

#print(config)

feature_extractor = ViTFeatureExtractor()
# or, to load one that corresponds to a checkpoint on the hub:
#feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224")

#the following gets called by classify_image() 
feature_extractor = PerceiverFeatureExtractor.from_pretrained("deepmind/vision-perceiver-conv")
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")

image_pipe = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor)

def classify_image(image):
  results = image_pipe(image)
  # convert to format Gradio expects
  output = {}
  for prediction in results:
    predicted_label = prediction['label']
    score = prediction['score']
    output[predicted_label] = score
  return output


image = gr.inputs.Image(type="pil")
image_piped = image_pipe(image)
label = gr.outputs.Label(num_top_classes=5)
examples = [["cats.jpg"], ["dog.jpg"]]
title = "Generate a Story from an Image"
description = "Demo for classifying images with Perceiver IO. To use it, simply upload an image and click 'submit' to let the model predict the 5 most probable ImageNet classes. Results will show up in a few seconds."  + image_piped
article = "<p style='text-align: center'></p>"

gr.Interface(fn=classify_image, inputs=image, outputs=label, title=title, description=description, examples="", enable_queue=True).launch(debug=True)