File size: 8,742 Bytes
d02e83e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# Scene Text Recognition Model Hub
# Copyright 2022 Darwin Bautista
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Optional, Tuple, List
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from nltk import edit_distance
from pytorch_lightning.utilities.types import EPOCH_OUTPUT, STEP_OUTPUT
from timm.optim import create_optimizer_v2
from torch import Tensor
from torch.optim import Optimizer
from torch.optim.lr_scheduler import OneCycleLR
from strhub.data.utils import CharsetAdapter, CTCTokenizer, Tokenizer, BaseTokenizer
@dataclass
class BatchResult:
num_samples: int
correct: int
ned: float
confidence: float
label_length: int
loss: Tensor
loss_numel: int
class BaseSystem(pl.LightningModule, ABC):
def __init__(self, tokenizer: BaseTokenizer, charset_test: str,
batch_size: int, lr: float, warmup_pct: float, weight_decay: float) -> None:
super().__init__()
self.tokenizer = tokenizer
self.charset_adapter = CharsetAdapter(charset_test)
self.batch_size = batch_size
self.lr = lr
self.warmup_pct = warmup_pct
self.weight_decay = weight_decay
@abstractmethod
def forward(self, images: Tensor, max_length: Optional[int] = None) -> Tensor:
"""Inference
Args:
images: Batch of images. Shape: N, Ch, H, W
max_length: Max sequence length of the output. If None, will use default.
Returns:
logits: N, L, C (L = sequence length, C = number of classes, typically len(charset_train) + num specials)
"""
raise NotImplementedError
@abstractmethod
def forward_logits_loss(self, images: Tensor, labels: List[str]) -> Tuple[Tensor, Tensor, int]:
"""Like forward(), but also computes the loss (calls forward() internally).
Args:
images: Batch of images. Shape: N, Ch, H, W
labels: Text labels of the images
Returns:
logits: N, L, C (L = sequence length, C = number of classes, typically len(charset_train) + num specials)
loss: mean loss for the batch
loss_numel: number of elements the loss was calculated from
"""
raise NotImplementedError
def configure_optimizers(self):
agb = self.trainer.accumulate_grad_batches
# Linear scaling so that the effective learning rate is constant regardless of the number of GPUs used with DDP.
lr_scale = agb * math.sqrt(self.trainer.num_devices) * self.batch_size / 256.
lr = lr_scale * self.lr
optim = create_optimizer_v2(self, 'adamw', lr, self.weight_decay)
sched = OneCycleLR(optim, lr, self.trainer.estimated_stepping_batches, pct_start=self.warmup_pct,
cycle_momentum=False)
return {'optimizer': optim, 'lr_scheduler': {'scheduler': sched, 'interval': 'step'}}
def optimizer_zero_grad(self, epoch: int, batch_idx: int, optimizer: Optimizer, optimizer_idx: int):
optimizer.zero_grad(set_to_none=True)
def _eval_step(self, batch, validation: bool) -> Optional[STEP_OUTPUT]:
images, labels = batch
correct = 0
total = 0
ned = 0
confidence = 0
label_length = 0
if validation:
logits, loss, loss_numel = self.forward_logits_loss(images, labels)
else:
# At test-time, we shouldn't specify a max_label_length because the test-time charset used
# might be different from the train-time charset. max_label_length in eval_logits_loss() is computed
# based on the transformed label, which could be wrong if the actual gt label contains characters existing
# in the train-time charset but not in the test-time charset. For example, "aishahaleyes.blogspot.com"
# is exactly 25 characters, but if processed by CharsetAdapter for the 36-char set, it becomes 23 characters
# long only, which sets max_label_length = 23. This will cause the model prediction to be truncated.
logits = self.forward(images)
loss = loss_numel = None # Only used for validation; not needed at test-time.
probs = logits.softmax(-1)
preds, probs = self.tokenizer.decode(probs)
for pred, prob, gt in zip(preds, probs, labels):
confidence += prob.prod().item()
pred = self.charset_adapter(pred)
# Follow ICDAR 2019 definition of N.E.D.
ned += edit_distance(pred, gt) / max(len(pred), len(gt))
if pred == gt:
correct += 1
total += 1
label_length += len(pred)
return dict(output=BatchResult(total, correct, ned, confidence, label_length, loss, loss_numel))
@staticmethod
def _aggregate_results(outputs: EPOCH_OUTPUT) -> Tuple[float, float, float]:
if not outputs:
return 0., 0., 0.
total_loss = 0
total_loss_numel = 0
total_n_correct = 0
total_norm_ED = 0
total_size = 0
for result in outputs:
result = result['output']
total_loss += result.loss_numel * result.loss
total_loss_numel += result.loss_numel
total_n_correct += result.correct
total_norm_ED += result.ned
total_size += result.num_samples
acc = total_n_correct / total_size
ned = (1 - total_norm_ED / total_size)
loss = total_loss / total_loss_numel
return acc, ned, loss
def validation_step(self, batch, batch_idx) -> Optional[STEP_OUTPUT]:
return self._eval_step(batch, True)
def validation_epoch_end(self, outputs: EPOCH_OUTPUT) -> None:
acc, ned, loss = self._aggregate_results(outputs)
self.log('val_accuracy', 100 * acc, sync_dist=True)
self.log('val_NED', 100 * ned, sync_dist=True)
self.log('val_loss', loss, sync_dist=True)
self.log('hp_metric', acc, sync_dist=True)
def test_step(self, batch, batch_idx) -> Optional[STEP_OUTPUT]:
return self._eval_step(batch, False)
class CrossEntropySystem(BaseSystem):
def __init__(self, charset_train: str, charset_test: str,
batch_size: int, lr: float, warmup_pct: float, weight_decay: float) -> None:
tokenizer = Tokenizer(charset_train)
super().__init__(tokenizer, charset_test, batch_size, lr, warmup_pct, weight_decay)
self.bos_id = tokenizer.bos_id
self.eos_id = tokenizer.eos_id
self.pad_id = tokenizer.pad_id
def forward_logits_loss(self, images: Tensor, labels: List[str]) -> Tuple[Tensor, Tensor, int]:
targets = self.tokenizer.encode(labels, self.device)
targets = targets[:, 1:] # Discard <bos>
max_len = targets.shape[1] - 1 # exclude <eos> from count
logits = self.forward(images, max_len)
loss = F.cross_entropy(logits.flatten(end_dim=1), targets.flatten(), ignore_index=self.pad_id)
loss_numel = (targets != self.pad_id).sum()
return logits, loss, loss_numel
class CTCSystem(BaseSystem):
def __init__(self, charset_train: str, charset_test: str,
batch_size: int, lr: float, warmup_pct: float, weight_decay: float) -> None:
tokenizer = CTCTokenizer(charset_train)
super().__init__(tokenizer, charset_test, batch_size, lr, warmup_pct, weight_decay)
self.blank_id = tokenizer.blank_id
def forward_logits_loss(self, images: Tensor, labels: List[str]) -> Tuple[Tensor, Tensor, int]:
targets = self.tokenizer.encode(labels, self.device)
logits = self.forward(images)
log_probs = logits.log_softmax(-1).transpose(0, 1) # swap batch and seq. dims
T, N, _ = log_probs.shape
input_lengths = torch.full(size=(N,), fill_value=T, dtype=torch.long, device=self.device)
target_lengths = torch.as_tensor(list(map(len, labels)), dtype=torch.long, device=self.device)
loss = F.ctc_loss(log_probs, targets, input_lengths, target_lengths, blank=self.blank_id, zero_infinity=True)
return logits, loss, N
|