Spaces:
Runtime error
Runtime error
File size: 12,185 Bytes
193b86e aea4c4e 193b86e 06d8f45 193b86e 80cd428 193b86e 06d8f45 df2c461 193b86e 774e9c9 d63e3e6 193b86e aea4c4e 193b86e 774e9c9 aea4c4e 6e02b3f 6d991bb 774e9c9 6e02b3f aea4c4e 6e02b3f aea4c4e 6e02b3f 8d3287f 774e9c9 f348280 6e02b3f aea4c4e 8d3287f aea4c4e 774e9c9 4777812 aea4c4e 06d8f45 193b86e 774e9c9 193b86e 774e9c9 193b86e 21a6e55 b7695f0 80cd428 193b86e 06d8f45 aea4c4e 774e9c9 aea4c4e 193b86e 06d8f45 774e9c9 193b86e aea4c4e 06d8f45 193b86e aea4c4e 193b86e 2d6e814 1cdf3ed 06d8f45 193b86e aea4c4e 6e02b3f 774e9c9 aea4c4e 193b86e 06d8f45 774e9c9 193b86e 06d8f45 2c1761f 541b69c 2c1761f 774e9c9 541b69c 06d8f45 193b86e 2c1761f 06d8f45 193b86e 774e9c9 b7695f0 774e9c9 06d8f45 193b86e 06d8f45 193b86e aea4c4e 06d8f45 193b86e 774e9c9 193b86e 774e9c9 aea4c4e 193b86e 06d8f45 193b86e 06d8f45 193b86e aea4c4e 8d3287f aea4c4e b7695f0 aea4c4e 774e9c9 aea4c4e 774e9c9 aea4c4e 774e9c9 193b86e 06d8f45 193b86e 06d8f45 193b86e aea4c4e 193b86e aea4c4e 193b86e aea4c4e 8de9eef 193b86e 8de9eef 06d8f45 8de9eef 193b86e 80cd428 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import os
import json
import datetime
from email.utils import parseaddr
import gradio as gr
import pandas as pd
import numpy as np
from datasets import load_dataset
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi, snapshot_download
# InfoStrings
from scorer import question_scorer
from content import format_error, format_warning, format_log, TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, \
CITATION_BUTTON_TEXT, model_hyperlink
TOKEN = os.environ.get("TOKEN", None)
# print(TOKEN)
OWNER = "autogenCTF"
DATA_DATASET = f"{OWNER}/CTFAIA"
INTERNAL_DATA_DATASET = f"{OWNER}/CTFAIA_internal"
SUBMISSION_DATASET = f"{OWNER}/CTFAIA_submissions_internal"
CONTACT_DATASET = f"{OWNER}/contact_info"
RESULTS_DATASET = f"{OWNER}/test_result"
LEADERBOARD_PATH = f"{OWNER}/agent_ctf_leaderboard"
api = HfApi()
YEAR_VERSION = "2024"
os.makedirs("scored", exist_ok=True)
all_version = ['20240602']
contact_infos = load_dataset(
CONTACT_DATASET,
token=TOKEN,
download_mode="force_redownload",
verification_mode="no_checks"
)
all_gold_dataset = {}
all_gold_results = {}
eval_results = {}
for dataset_version in all_version:
all_gold_dataset[dataset_version] = load_dataset(
INTERNAL_DATA_DATASET,
dataset_version,
token=TOKEN,
download_mode="force_redownload",
verification_mode="no_checks",
trust_remote_code=True
)
all_gold_results[dataset_version] = {
split: {row["task_name"]: row for row in all_gold_dataset[dataset_version][split]}
for split in ["test", "validation"]
}
eval_results[dataset_version] = load_dataset(
RESULTS_DATASET,
dataset_version,
token=TOKEN,
download_mode="force_redownload",
verification_mode="no_checks",
trust_remote_code=True
)
def get_dataframe_from_results(eval_results, split):
local_df = eval_results[split]
local_df = local_df.map(lambda row: {"model": model_hyperlink(row["url"], row["model"])})
local_df = local_df.remove_columns(["url"])
local_df = local_df.rename_column("model", "Model name")
local_df = local_df.rename_column("model_family", "Model family")
df = pd.DataFrame(local_df)
df = df.sort_values(by=["completion_level"], ascending=False)
df = df[["Model name", "Model family", "organisation", "completion_level", "success_rate", "expertise", "reasoning",
"comprehension"]]
numeric_cols = [c for c in local_df.column_names if c in ["expertise", "reasoning", "comprehension"]]
percent_cols = [c for c in local_df.column_names if c in ["success_rate", "completion_level"]]
df_style_format = {}
for label in numeric_cols:
df_style_format[label] = "{:.2f}"
for label in percent_cols:
df_style_format[label] = "{:.2%}"
df = df.style.format(df_style_format)
return df
eval_dataframe = {}
for dataset_version in all_version:
eval_dataframe[dataset_version] = get_dataframe_from_results(
eval_results=eval_results[dataset_version],
split="validation"
)
def restart_space():
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
TYPES = ["markdown", "str", "str", "str", "number", "number", "number", "number"]
LEVELS = ["all", 1, 2, 3]
def add_new_eval(
dataset_version: str,
model: str,
model_family: str,
url: str,
path_to_file: str,
organisation: str,
mail: str,
):
val_or_test = 'validation'
# Very basic email parsing
_, parsed_mail = parseaddr(mail)
if not "@" in parsed_mail:
return format_warning("Please provide a valid email adress.")
print("Adding new eval")
# Check if the combination model/org already exists and prints a warning message if yes
# if model.lower() in set(
# [m.lower() for m in eval_results[dataset_version][val_or_test]["model"]]) and organisation.lower() in set(
# [o.lower() for o in eval_results[dataset_version][val_or_test]["organisation"]]):
# return format_warning("This model has been already submitted.")
if path_to_file is None:
return format_warning("Please attach a file.")
# Gold answers
gold_results = all_gold_results[dataset_version]
print(gold_results)
# Compute score
file_path = path_to_file.name
success_rate = {'all': 0, 1: 0, 2: 0, 3: 0}
completion_level = {'all': 0, 1: 0, 2: 0, 3: 0}
expertise = {'all': 0, 1: 0, 2: 0, 3: 0}
reasoning = {'all': 0, 1: 0, 2: 0, 3: 0}
comprehension = {'all': 0, 1: 0, 2: 0, 3: 0}
num = {'all': 0, 1: 0, 2: 0, 3: 0}
with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
with open(file_path, 'r') as f:
for ix, line in enumerate(f):
try:
task = json.loads(line)
except Exception:
return format_error(f"Line {ix} is incorrectly formatted. Please fix it and resubmit your file.")
if "final_answer" not in task:
raise format_error(f"Line {ix} contains no final_answer key. Please fix it and resubmit your file.")
answer = task["final_answer"]
task_name = task["task_name"]
if task_name in gold_results[val_or_test]:
level = int(gold_results[val_or_test][task_name]["Level"])
score = question_scorer(task, gold_results[val_or_test][task_name])
else:
continue
# try:
# level = int(gold_results[val_or_test][task_name]["Level"])
# score = question_scorer(task, gold_results[val_or_test][task_name])
# except KeyError:
# return format_error(
# f"{task_name} not found in split {val_or_test}. Are you sure you submitted the correct file?")
scored_file.write(
json.dumps({
"id": task_name,
"final_answer": answer,
"score": score,
"level": level
}) + "\n"
)
num[level] += 1
completion_level[level] += score[0]
expertise[level] += score[1]
reasoning[level] += score[2]
comprehension[level] += score[3]
num['all'] += 1
completion_level['all'] += score[0]
expertise['all'] += score[1]
reasoning['all'] += score[2]
comprehension['all'] += score[3]
if score[0] == 10:
success_rate[level] += 1
success_rate['all'] += 1
for key in LEVELS:
success_rate[key] = success_rate[key] / num[key]
completion_level[key] = completion_level[key] / num[key] / 10
expertise[key] = expertise[key] / num[key]
reasoning[key] = reasoning[key] / num[key]
comprehension[key] = comprehension[key] / num[key]
print(success_rate, completion_level, expertise, reasoning, comprehension)
# Save submitted file
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=path_to_file.name,
path_in_repo=f"{organisation}/{model}/{dataset_version}_{val_or_test}_raw_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=TOKEN
)
# Save scored file
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
path_in_repo=f"{organisation}/{model}/{dataset_version}_{val_or_test}_scored_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=TOKEN
)
# Actual submission
eval_entry = {
"model": model,
"model_family": model_family,
"url": url,
"organisation": organisation,
"success_rate": success_rate["all"],
"completion_level": completion_level["all"],
"expertise": expertise["all"],
"reasoning": reasoning["all"],
"comprehension": comprehension["all"]
}
eval_results[dataset_version][val_or_test] = eval_results[dataset_version][val_or_test].add_item(eval_entry)
eval_results[dataset_version].push_to_hub(RESULTS_DATASET, config_name=dataset_version, token=TOKEN)
contact_info = {
"model": model,
"model_family": model_family,
"url": url,
"organisation": organisation,
"mail": mail,
}
contact_infos[val_or_test] = contact_infos[val_or_test].add_item(contact_info)
contact_infos.push_to_hub(CONTACT_DATASET, config_name=YEAR_VERSION, token=TOKEN)
return format_log(
f"Model {model} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait a bit to see the score displayed")
def refresh():
eval_results = {}
for dataset_version in all_version:
eval_results[dataset_version] = load_dataset(
RESULTS_DATASET,
dataset_version,
token=TOKEN,
download_mode="force_redownload",
verification_mode="no_checks",
trust_remote_code=True
)
new_eval_dataframe = {}
new_leaderboard_tables = []
for dataset_version in all_version:
new_eval_dataframe[dataset_version] = get_dataframe_from_results(
eval_results=eval_results[dataset_version],
split="validation"
)
new_leaderboard_tables.append(new_eval_dataframe[dataset_version])
if len(new_leaderboard_tables) == 1:
return new_leaderboard_tables[0]
else:
return new_leaderboard_tables
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
) # .style(show_copy_button=True)
leaderboard_tables = []
for dataset_version in all_version:
with gr.Tab(dataset_version):
leaderboard_tables.append(
gr.components.Dataframe(
value=eval_dataframe[dataset_version], datatype=TYPES, interactive=False,
column_widths=["20%"]
)
)
refresh_button = gr.Button("Refresh")
refresh_button.click(
refresh,
inputs=[],
outputs=leaderboard_tables,
)
with gr.Accordion("Submit a new model for evaluation"):
with gr.Row():
with gr.Column():
level_of_test = gr.Radio(all_version, value=all_version[0], label="dataset_version")
model_name_textbox = gr.Textbox(label="Model name", value='')
model_family_textbox = gr.Textbox(label="Model family", value='')
url_textbox = gr.Textbox(label="Url to model information", value='')
with gr.Column():
organisation = gr.Textbox(label="Organisation", value='')
mail = gr.Textbox(
label="Contact email (will be stored privately, & used if there is an issue with your submission)",
value='')
file_output = gr.File()
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
level_of_test,
model_name_textbox,
model_family_textbox,
url_textbox,
file_output,
organisation,
mail
],
submission_result,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch()
|